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Abstract. Multiple stressors to a shallow lake ecosystem have the ability to control the
relative stability of alternative states (clear, macrophyte-dominated or turbid, algal-
dominated). As a consequence, the use of remedial biomanipulations to induce trophic
cascades and shift a turbid lake to a clear state is often only a temporary solution. Here we
show the instability of short-term manipulations in the shallow Lake Christina (Minnesota,
USA) is governed by the long-term state following a regime shift in the lake. During the
modern, managed period of the lake, three top-down manipulations (fish kills) were
undertaken inducing temporary (5–10 years) unstable clear-water states. Paleoecological
remains of diatoms, along with proxies of primary production (total chlorophyll a and total
organic carbon accumulation rate) and trophic state (total P) from sediment records clearly
show a single regime shift in the lake during the early 1950s; following this shift, the
functioning of the lake ecosystem is dominated by a persistent turbid state. We find that
multiple stressors contributed to the regime shift. First, the lake began to eutrophy (from
agricultural land use and/or increased waterfowl populations), leading to a dramatic increase
in primary production. Soon after, the construction of a dam in 1936 effectively doubled the
depth of the lake, compounded by increases in regional humidity; this resulted in an increase in
planktivorous and benthivorous fish reducing phytoplankton grazers. These factors further
conspired to increase the stability of a turbid regime during the modern managed period, such
that switches to a clear-water state were inherently unstable and the lake consistently returned
to a turbid state. We conclude that while top-down manipulations have had measurable
impacts on the lake state, they have not been effective in providing a return to an ecosystem
similar to the stable historical period. Our work offers an example of a well-studied ecosystem
forced by multiple stressors into a new long-term managed period, where manipulated clear-
water states are temporary, managed features.
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INTRODUCTION

The deterioration of shallow lakes from a clear-water,

macrophyte-dominated state to a turbid, phytoplankton

state has been observed and described theoretically

through the concept of alternative stable states (Fig. 1)

(Scheffer et al. 1993, Scheffer and Carpenter 2003). The

relative stability of turbid and clear-water states as

determined by external conditions (e.g., nutrients) can

be such that long-term establishment of a stable clear,

macrophyte state is not possible once the ecosystem has

been significantly perturbed unless the external condi-

tions are dramatically reduced (Fig. 1a). In this context

we refer to this perturbation as a ‘‘regime shift,’’ in other

words a change in the ecosystem between stable clear

and turbid states (Scheffer and Carpenter 2003).

Ecosystem-scale biomanipulations have been used to

demonstrate threshold responses in shallow lakes

(Hanson and Butler 1994a, b, Jeppesen et al. 1997,

Scheffer 1998). Often they are implemented as remedial

approaches to improve water quality impaired by a

dominance of phytoplankton, high turbidity, and high

nutrient levels. In a number of cases the introduction of

piscivorous fish and/or the removal of planktivores have

induced trophic cascades, indirectly affecting changes in

primary production (Hanson and Butler 1994a, Car-

penter et al. 2011). Remediation efforts through
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biomanipulations on shallow, turbid lakes can be

hindered by the hysteresis of internal nutrient loading

(Fig. 1b; see also Jeppesen et al. 2005). Thus, it has been

suggested that a dramatic reduction of external and/or

internal nutrient loading is necessary in concert with

top-down manipulations to sustain a clear stable state

once the system has been perturbed (McQueen 1998,

Benndorf et al. 2002, Jeppesen et al. 2007).
Studies integrating both contemporary and paleolim-

nological data on shallow lakes have successfully
described the historical context for modern deterioration

of macrophyte communities and water quality (David-
son et al. 2005, Sayer et al. 2010), but few, if any, have

documented lake histories over periods of biomanipu-
lation. Here we pair contemporary and paleolimnolog-
ical approaches to differentiate between true regime

shifts and unstable, short-term changes in lake state due
to ecosystem biomanipulations.

Lake Christina is a large, shallow lake in the Upper
Midwest United States and was once one of the most

important feeding and staging areas for migratory
waterfowl in the Mississippi Flyway. From 1900 to the

mid-20th century the lake was particularly important for
Canvasback Ducks (Aythya valisineria) (Smith 1946,

Ordal 1966). Today the lake is a managed ecosystem
and has been since its deterioration to a turbid

phytoplankton-dominated state in the mid-1950s, which
resulted in the loss of submerged aquatic vegetation and

migratory waterfowl that rely on the plants. There have
been three top-down biomanipulations using fish

toxicants (1965, 1987, and 2003), while the lake was in
a turbid state, to induce a fish kill and subsequent

trophic cascades. Following the biomanipulations, each
resulting clear state has been temporary, lasting from 5

to 10 years before deterioration of the water quality and
loss of macrophytes. Many questions remain as to the
driver of the lake’s initial regime shift and why

continued efforts to reverse it have failed. The objectives
of this study were to (1) determine whether Lake

Christina experienced turbid states prior to human
settlement, (2) elucidate the drivers of the regime shift

in the 1950s, and (3) establish whether alternative state
changes induced by biomanipulations represent regime

shifts or are temporary unstable features. Our compila-
tion of multiple contemporary and paleoecological

parameters documents how the effectiveness of short-
term manipulations is ultimately governed by the long-

term trophic status and stability of the lake and
surrounding landscape.

METHODS

Study site

Lake Christina is an alkaline and eutrophic lake

situated in the Prairie Pothole Region of Minnesota
(46.09848 N, 95.74298 W; Fig. 2). The lake has a depth of

1.2 m over ;80% of the basin (total area of 1600 ha),
with a small, deeper (4.3 m maximum depth), isolated

basin on the eastern end (Fig. 2). The lake is situated in
the Pomme de Terre River basin, on gray calcareous

glacial drift deposits associated with the Alexandria
stagnant moraine. The hummocky terrain surrounding

the lake is typical of the kettle and knob or prairie
pothole landscape of Wisconsin glaciation. The lake

catchment is relatively small, there are no major fluvial

FIG. 1. Theoretical predictions for nutrient-driven shifts
across alternative states in shallow lakes. (a) Theory predicts
that the stability of the clear-water state declines as nutrients
increase, with a corresponding increase in the stability of a
turbid state. Perturbations can cause a regime shift in the lake
at moderate levels of nutrients, but the only possible states at
low and high nutrient concentrations are clear and turbid,
respectively. (b) Alternative stable states (turbidity) in shallow
lakes as a function of nutrient levels, showing the possible
hysteresis present following a reduction in external nutrient
loading. The dashed line represents the critical turbidity
boundary. This model assumes a dependent relationship among
nutrients, turbidity, and submerged aquatic vegetation (SAV).
The figure is modified from Scheffer et al. (1993) and Scheffer
and Carpenter (2003).
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inputs to the lake, and while groundwater is an

important component of the drainage area, its relative

influence on the hydrology is unknown. The main outlet

from the lake is into Pelican Lake to the southwest. The

late 1930s and early 1940s have been described as the

best years for migratory waterfowl on Lake Christina,

mainly Canvasback Ducks (Ordal 1966), possibly owing

to the lack of suitable habitat in the region following the

1930s drought. Prior to 1900, the lake was used mainly

by Lesser Scaup (Aythya affinis) and Redhead Ducks

(Aythya americana).

History of damming and biomanipulations

Lake Christina has long been a focus of management,

initially to address issues of water quantity and later to

improve water quality related to migrating diving duck

habitat. To conserve water during times of drought (e.g.,

1930s), a dam was constructed at the outflow of Lake

Christina in 1936. While mean water depths were greater

following dam construction, the aerial extent of the lake

did not increase. Starting in the 1950s, recurrent high

turbidity, loss of submerged vascular plants, and

declining fall use by diving ducks, led managers to treat

the lake with fish toxicants three times; first during

November 1965, then again in October 1987 and

October 2003. The main targets of the treatments were

the planktivores (bluegill Lepomis macrochirus, small

yellow perch Perca flavescens, and big-mouth buffalo

Ictiobus cyprinellus) and benthivores (bullhead Ameirus

spp.) (see Hanson and Butler [1994a] for a description of

the fish community response to the 1987 treatment). In

general, water clarity, extent of submerged aquatic

plants, and fall duck use increased following all three

fish removals. However, the improvements from each

biomanipulation were temporary and the effects persist-

ed approximately 10 years following fish kills in 1965

and 1987, and only about 5 years after the 2003

treatment. Varying conditions after the treatments more

than likely influenced the efficacy of these measures. For

example, the 1965 treatment was followed by severe

winter conditions and under-ice hypoxia, and the

combined effects reduced the fish populations dramat-

ically (T. Carlson, unpublished data). The persistence of

the clear state following the 1987 manipulation com-

pared with the short-lived clear state following the 2003

manipulation is due to several factors, including (1) 1987

was a thorough fish kill effectively extirpating most of

the planktivorous fish; (2) following 1987, piscivores

(largemouth bass Micropterus salmoides and walleye

Sander vitreus) were stocked to control the planktivores;

and (3) the deeper eastern basin of Lake Christina was

aerated to provide an overwinter refuge for the

piscivores (Hanson and Butler 1994a).

Modern limnological sampling

Limnological monitoring of Lake Christina began in

1985 and methods have remained consistent to present

day (Hanson and Butler 1990, 1994a, b). Sampling has

taken place at up to seven locations and at a minimum

of five within the shallow western basin of the lake (Fig.

2). Epilimnetic water samples were collected during the

open-water growing season (approximately late April

through October) at a frequency ranging from every

other week to once a month and analyzed for nutrients

(total P, orthophosphate, total N, and dissolved

inorganic N), total suspended solids, and chlorophyll a

at the Minnesota Department of Agriculture Laborato-

ry (Hanson and Butler 1994a, b; Table 1). At the time of

FIG. 2. (a) Site location map within Minnesota and (b) a
detailed map of the hydrologic catchment. The black dot shows
the sediment coring location, and white dots are the locations of
water sampling.
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water sampling, measurements were taken for water

clarity (Secchi depth) and light attenuation (Table 1).

Submerged aquatic vegetation (SAV) has been sampled

since 1947, with annual sampling from 1980 to present

(Fig. 3). Abundance estimates from weighted plant rake

tows were compiled over at least 35 stations throughout

the lake (Hansel-Welch et al. 2003).

Samples of phytoplankton and SAV (Myriophyllum

sibiricum and Stuckenia pectinata) were also collected for

analysis of stable isotope ratios and elemental abun-

dance of C and N in the summer of 2006. SAV samples

were frozen and immediately transferred to the labora-

tory for analysis. In the laboratory, samples were

separated by species, scrubbed, washed with dilute acid

to remove any precipitated inorganic C, dried and

ground. Phytoplankton samples were collected by

filtering lake water through 80 lm filters to remove

zooplankton then filtering onto 0.7-lm precombusted

Whatman glass fiber filters. Filters were dried and stored

desiccated until time of analysis.

Sediment core collection and dating

Two sediment cores that were 0.75 m (CRWA09) and

0.83 m (CRWB09) in length were collected approximately

1.5 m apart, using a piston-type corer (Wright 1991) on

22 October 2009 at a water depth of 1.3 m (Fig. 2). Both

cores were subsampled at a resolution of 0.25 cm; core

CRWB09 was freeze-dried and prepared for diatom and

all geochemical analyses, while core CRWA09 was left

wet for analysis of zooplankton remains.

Geochronology was established on CRWB09 through
210Pb decay (measured as 210Po) by alpha spectroscopy

and 137Cs decay by gamma spectroscopy (Appleby

2010). The constant rate of supply (CRS) model was

used to estimate ages and sediment accumulation rate

(SAR) based on the radioactive decay of excess (or

unsupported) 210Pb above the background (or support-

ed) 210Pb activity (Appleby and Oldfield 1978). Confir-

mation of the 1963 Partial Test Ban Treaty 137Cs peak

was sought to confirm the 210Pb age–depth model.

Diatoms and cladoceran remains

Sediments were processed for diatom sub-fossils using

standard techniques for the oxidation of both carbonate

minerals and organic matter and permanently mounted

on slides for diatom enumeration (Battarbee et al. 2001).

Diatoms were enumerated under oil immersion (numer-

ical aperture ¼ 1.4) at a magnification of 10003 using

differential interference contrast optics. Several diatom

floras were consulted for species identification (Kram-

TABLE 1. Mean summer epilimnetic data for Lake Christina.

Year State
Water

level� (m asl)
SAV�
(%)

Secchi
depth (m) TSS (mg/L)

1% PAR
depth§ (m)

20% PAR
depth§ (m)

1985 turbid 369.84 8 0.3 70.73 (25.07) 0.54 0.38
1986 turbid 370.03 31 0.39 25.89 (22.03) 0.99 0.69
1987 turbid 369.72 57 0.46 38.82 (23.40) 0.97 0.68
1988 t-clear 369.60 95 0.53 33.37 (16.18) 1.04 0.73
1989 t-clear 369.73 97 0.68 23.4 (13.42) 1.32# 0.92

1990 clear 369.76 97 1.20# 4.25 (1.63) 2.37# 1.65#
1991 clear 369.84 100 1.20# 5.26 (5.03) 1.97# 1.38#
1992 clear 369.56 100 1.08 4.77 (3.12) 1.96# 1.37#
1993 clear 370.04 97 1.20# 3.97 (2.54) 2.31# 1.62#
1994 clear 369.74 100 0.92 7.88 (4.95) 1.48# 1.03

1995 clear 369.73 94 0.81 8.98 (4.22) 1.89# 1.32#
1996 clear 369.71 100 0.96 4.91 (2.70) 1.55# 1.08
1997 clear 369.68 100 1.08 4.07 (3.62) 1.84# 1.29#
1998 c-turbid 369.68 100 0.84 11.32 (4.50) 1.30# 0.91
1999 c-turbid 369.81 94 0.7 24.15 (12.76) 1.23# 0.86

2000 turbid 369.64 86 0.29 71.25 (23.81) 0.63 0.44
2001 turbid 369.99 66 0.37 58.6 (14.75) 0.91 0.64
2002 turbid 369.83 49 0.33 53.62 (12.32) 0.58 0.40
2003 turbid 369.62 51 0.33 56.89 (15.43) 0.76 0.53
2004 t-clear 369.79 100 0.49 28.69 (12.59) 1.21# 0.85

2005 clear 369.80 100 1.13 7.67 (8.90) 0.87 0.61
2006 clear 369.89 100 1.14 2.46 (1.22) nm nm
2007 clear 369.82 100 1.23# 6.34 (3.16) nm nm
2008 clear 369.74 100 0.79 16.29 (10.26) nm nm
2009 c-turbid 369.68 86 0.51 29.96 (11.89) nm nm

Notes: Number of samples range from 20 to 56 per open water season (April through October) collected over five monitoring
stations. Standard deviations are in parentheses. The states t-clear and c-turbid represent the transition from turbid to clear and
clear to turbid, respectively. Abbreviations are: asl, above sea level; TSS, total suspended solids; TP, total phosphorus; TN, total
nitrogen; nm, light attenuation not measured; Unk, unknown.

� Water level measured at staff gauge in lake outlet.
� Submerged aquatic vegetation (SAV) coverage.
§ Calculated potential depth of attenuation of photosynthetically active radiation (PAR).
} Total peak waterfowl determined following methods of Howe and Carlson (1969).
# Lake bottom.
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mer and Lange-Bertalot 1986, 1988, 1991a, b, Fallu et al.

2000) and photomicrographic documentation was con-

ducted throughout the study using light microscopy. No

evidence of frustule dissolution was noted during the

analysis.

Sample processing for cladoceran remains was mod-

ified from Frey (1986) and Deevey (1942). Two to three

grams of wet sediment were gently stirred in 150 mL of

10% KOH just below the boiling point for one hour. To

preserve the smallest remains, samples were not rinsed

through a screen but centrifuged and the supernate

removed. Samples were brought back up to 50 mL with

distilled water, shaken, and re-centrifuged. This process

was repeated until the pH matched the value of distilled

water in the lab. Processed samples were reconstituted in

a Falcon tube with deionized water up to 20 mL. Two 1-

mL subsamples were taken with a Hempsten-Stempel

pipette and counted on a Sedgewick-Rafter cell at 1003

with an Olympus BX50F4 microscope (Olympus Optical

Company, Tokyo, Japan) capable of examination up to

4003 for taxonomic purposes. Semi-permanent slide

mounts in polyvinylpyrrolidone (PVP) were used for

taxonomic verification. Results were converted to

abundance (individuals/g dry sediment). Standard keys

and monographs were used for taxonomic identification

(Frey 1958, 1986, Balcer et al. 1984, Hann 1990, De

Melo and Hebert 1994, Smith 2001, Sweetman and Smol

2006, Thorp and Covich 2009).

Sediment geochemistry

The physical composition of the sediments was

established using loss-on-ignition (Heiri et al. 2001).

Percent organic matter (% OM) was attained by

combustion at 5508C, percent carbonate-C (% CO3) at

10008C, with remaining mass representing the non-

carbonate inorganic fraction. Samples of sediment

organic matter were analyzed for percent abundance of

C and N and carbon stable isotopes (d13C) following

acid digestion to remove inorganic C (Verardo et al.

1990). All samples were analyzed by pyrolysis on a Carlo

Erba NA1500 elemental analyzer/Conflo II device (CE

Elantech, Lakewood, New Jersey, USA) coupled with a

Finnigan Delta Plus mass spectrometer (Finnigan MAT,

Bremen, Germany) in the Stable Isotope Laboratory at

Stanford University. Organic C:N (atomic) values were

calculated based on total organic carbon (TOC) and

total nitrogen (TN) results. All d13C values are

expressed relative to the Pee Dee Belemnite (PDB)

standard. Approximately 5% of the samples were

replicated yielding average standard deviations of

0.480% for TOC, 0.113% for TN, and 0.119% for d13C.
We used a modified version of the method by Hieltjes

and Lijklema (1980) for TP of freeze dried sediments.

Briefly, TP was extracted using 30% H2O2 followed by

10 mol/L HCl in a shaking hot water bath and aliquots

of the extracts were stabilized using 1 mol/L Na2S2O5.

Aliquots are then analyzed using the ascorbic acid

method (Clescerl et al. 1999) with a flow-injection

analysis auto-analyzer (Lachat Quikchem 8000; Lachat

Instruments, Loveland, Colorado, USA). The percent

relative standard deviation among method triplicate

samples, which were run on 10% of the sediment

intervals, was ,2.5% (0.03 mg/g).

TABLE 1. Extended.

Chl a (lg/L) TP (mg/L) TN (mg/L)
TN:TP
(atomic)

Peak fall
duck counts

Total peak waterfowl}
(no. birds)

51.59 (29.63) 0.13 (0.04) 3.07 (0.62) 53.6 Unk 2 200
22.05 (10.79) 0.06 (0.02) 2.53 (1.12) 94.6 Unk 3 000
36.8 (21.25) 0.07 (0.02) 1.41 (0.40) 44.6 Unk 15 775
24.7 (13.57) 0.08 (0.03) 1.66 (0.63) 45.2 29 650 57 000
21.7 (15.34) 0.08 (0.02) 1.73 (0.60) 50.6 25 825 68 275

5.98 (8.18) 0.03 (0.01) 1.09 (0.16) 94.3 41 450 71 025
6.16 (4.13) 0.03 (0.02) 0.96 (0.25) 73.5 36 445 101 895
4.36 (1.87) 0.04 (0.01) 1.09 (0.19) 62.0 48 330 79 865
5.28 (3.74) 0.03 (0.01) 1.01 (0.21) 85.0 131 500 266 625
11.34 (6.95) 0.04 (0.01) 1.11 (0.22) 64.4 209 200 600 940

12.29 (5.61) 0.05 (0.02) 1.22 (0.22) 54.4 12 190 209 560
7.32 (4.40) 0.04 (0.01) 1.03 (0.22) 51.1 25 522 85 632
7.93 (5.61) 0.02 (0.02) 1.2 (0.25) 110.1 12 268 465 669
16.63 (6.44) 0.06 (0.02) 1.8 (0.48) 68.0 14 533 295 978
30.47 (14.05) 0.08 (0.03) 2.13 (0.66) 59.1 9 465 150 915

60.17 (18.51) 0.13 (0.02) 3.39 (1.04) 55.6 15 030 19 000
53 (15.74) 0.1 (0.02) 2.53 (0.34) 53.5 5 440 6 265
42.67 (13.51) 0.08 (0.02) 2.4 (0.41) 63.4 1 505 6 226
38.18 (8.23) 0.09 (0.02) 2.73 (0.67) 69.4 3 124 4 601
22.69 (8.87) 0.06 (0.02) 1.99 (0.29) 76.1 11 075 182 126

8.71 (5.58) 0.04 (0.02) 1.07 (0.21) 64.8 11 212 225 825
7.64 (3.93) 0.04 (0.01) 1.01 (0.22) 63.3 16 400 256 328
14.6 (5.79) 0.05 (0.01) 1.42 (0.47) 68.1 24 824 262 877
19.97 (11.00) 0.06 (0.02) 1.8 (0.38) 64.9 3 170 Unk
30.51 (10.51) 0.07 (0.01) 1.79 (0.45) 60.0 2 200 Unk
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Sediment proxies of lake primary production

Spectrally inferred total chlorophyll a (TChla) in

sediments is a measure of both primary and derivative

chlorophyll a compounds (i.e., primary chlorophyll a

plus all chlorophyll a isomers, pheophytin a, and

pheophorbide a) and has previously been shown to

accurately assess the changing trophic status of lakes

over time (Michelutti et al. 2010). Sediment preparation

followed the methods outlined in Wolfe et al. (2006),

and TChla determinations were calculated using the

equation given in Michelutti et al. (2010). Briefly,

sediments were first freeze dried and sieved (125 lm
mesh size) to remove any possible confounding effects

from differences in water content and grain size. Spectral
measurements were performed with a Model 6500 series

Rapid Content Analyzer (FOSS NIRSystems, Laurel,
Maryland, USA) operating over the range of 400–2500
nm. Sediments were analyzed through the base of glass

vials, with each sample representing an average of 32
scans. A ceramic reference paddle equipped in the Rapid

Content Analyzer was used as a stable, consistent
reflectance reference that was taken between every

sample.
The total organic carbon mass accumulation rate

(TOC MAR) can reflect the primary production of a
lake if the organic C can be attributed to autochthonous

processes. We calculated the TOC MAR using [TOC]
(mg/g) multiplied by the sediment accumulation rate

(g�m�2�yr�1) for each sediment interval.

Numerical analysis

Detrended correspondence analysis (DCA) was used

to summarize the dominant gradient (i.e., DCA axis 1)
of diatom compositional turnover (Hill and Gauch

1980). All diatom species were included in the analysis,
detrending was by segments with downweighting of rare
taxa, and nonlinear rescaling was applied. When plotted

stratigraphically the DCA axis 1 scores show the
amount of turnover between samples over time in units

of standard deviation (SD).
A stratigraphically constrained cluster analysis was

used to determine zones within the diatom stratigraphy
based on Bray-Curtis dissimilarity distances (Grimm

1987). The zones were based on a uniform total sum-of-
squares height and statistical significance was tested

against a random broken-stick model (Bennett 1996).
Multiple linear regressions and Pearson’s product

moment correlation coefficients were calculated for
select untransformed variables. All statistical analyses

were carried out using R (R Core Development Team
2011).

RESULTS

Modern limnology

Sampling of macrophyte occurrence since 1947

provides us with the distinct periods when Lake
Christina was either turbid or clear (Fig. 3). The general

trend of plant succession following manipulations from
turbid to clear has been described in Hansel-Welch et al.

(2003), where a pioneering plant community of Najas
flexilis, N. marina, Myriophyllum sibiricum, and Ruppia

maritima was found to establish the year after the
manipulation, followed by a community of Chara

vulgaris, C. canescens, Stuckenia pectinata, and Potamo-
geton pusillus. During the summer growing seasons,

clear-water states are characterized by lower concentra-
tions of epilimnetic TP and Chl a, compared with turbid

states (Fig. 3). Throughout both the clear and turbid

FIG. 3. Aerial photographs of Lake Christina in the (a)
turbid state (4 August 1965) and (b) clear state (4 October
1972). (c) Submerged aquatic plant survey data compiled over
35 stations since 1947 with the aerial photograph dates marked
for reference. (d) Mean total phosphorus (TP) and chlorophyll
a (chl a) concentrations in water from five sampling stations
collected during the open water season. (e) Mean Daphnia spp.
and Bosmina spp. densities collected during the open water
season. Shaded areas represent periods when the lake is in a
turbid state. Photos provided by the John R. Borchert Map
Library, University of Minnesota, Minneapolis, Minnesota.
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states, Lake Christina remains eutrophic and phyto-

plankton growth appears to be P limited, based on

TN:TPmolar, which is .45 from 1985 to present (Table 1;

Elser et al. 2009). During clear states, large-bodied

Daphnia (D. pulex and D. galeata; Hanson and Butler

1994a) establish and Bosmina spp. (mainly B. lon-

girostris) decline due to competition (Fig. 3). As the

lake begins to transition back to a turbid state, Bosmina

spp. dominate the cladoceran community, along with

Chydorus spp. (Hanson and Butler 1994a).

Geochronology and sediment accumulation

In core CRWB09 supported 210Pb (background) was

reached at a depth of 21 cm and the average dry-mass

sediment accumulation rate for the core site is 0.019

g�cm�2�yr�1 (Fig. 4a). The average sediment accumula-

tion rate is based on estimated rates from the section of

the core where organic content is relatively constant and

there are no dramatic changes in the dry bulk density of

the sediment (below 15 cm). The average sediment

accumulation rate and dry bulk density were used to

extrapolate the 210Pb model to 1800 (Binford 1990).

While the onset of 137Cs is evident, no clear peak could

be defined to confirm the 1963 age horizon (Fig. 4a),

possibly due to migration within the sediments and poor

binding of 137Cs to the sediments, as reported in similar

lake systems (Brenner et al. 2006). Comparable sedi-

mentation between both cores was confirmed by analysis

of dry bulk density (g/cm3) on both cores at the same

depths (r2 ¼ 0.98, P , 0.001, df ¼ 18) and thus we

confidently applied the age–depth model to core

CRWA09.

The sediment accumulation rate (SAR) is relatively

stable from the 1850s to the 1930s, when it decreases and

then it slowly increases after 1960 (Fig. 4b). The

sediment of Lake Christina is dominated by autochtho-

nous calcite precipitation (Hanson et al. 1990), com-

prising ;60% by dry mass. Multiple linear regression

analysis with the percent sediment composition showed

that SAR is positively influenced by the deposition of

organics (r ¼ 0.81, P , 0.001, df ¼ 19), and inversely

correlated to carbonates (r¼�0.84, P , 0.001, df¼ 19)

or the minerogenic fraction (not significant).

Organic matter source

Both the C:N and d13C of organic matter have been

useful in studies of lake sediments to determine the

provenance of the organics (Kaushal and Binford 1999,

Meyers and Teranes 2001). Modern Stuckenia pectinata

(sago pondweed) had a C:Natomic of 20.1 6 0.2 (mean 6

SD) and a d13C of�11.5 6 0.03%, whereas Myriophyl-

lum sibiricum (shortspike water milfoil) had a C:Natomic

of 23.6.1 6 3.2 and a d13C of �10.8 6 0.9%. Modern

phytoplankton had a C:Natomic of 10.5 6 1.1 and a d13C
of�14.6 6 0.7% (Fig. 5). The sediment organic matter

has a C:Natomic ranging from 8.5 to 16.2 (mean: 11.2 6

2.1) and a d13C ranging from�8.6 % to�19.4% (mean:

�14.2 6 2.9%). A biplot of C:Natomic and d13C shows

that sediment organic matter falls within the range of

modern primary producers and there has been a general

transition from predominately SAV to phytoplankton

(Fig. 5).

Recent sedimentary records (1980–present)

The trends in Bosmina abundance recorded in both

sub-fossil and monitored water column samples are very

similar (r¼ 0.8, P¼ 0.03). The lowest Bosmina densities

are present during the clear states and higher densities

during the turbid (Fig. 6). Additional remains of the

zooplankton communities were observed in our sedi-

ment samples (e.g., Chydorus spp.), however only

Bosmina remains were of sufficient density for quanti-

tative analysis and directly correlated with contempo-

rary sampling. Profiles of sedimentary TP and TChla

FIG. 4. Results of 210Pb dating showing (a) the total 210Pb (circles) and 137Cs (squares) inventories with depth, where the dashed
line represents the 210Pb background activity, and (b) the modeled sediment ages (circles) and calculated sedimentation rates (black
squares) with error bars showing 6SD.
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trends since 1980 do not show any clear response to the

alternate states of the lake. TChla shows little variability

from 1980 to 2000, after which concentrations begin to

increase monotonically. Concentrations of TP show

some correlation with epilimnetic TP post-2000, how-

ever this is based on a single sample at approximately

2002 and it would be an over-interpretation to conclude

any correlation between epilimnetic and sediment

measurements. In general the trends in sediment TP

show a slight increase in the early 1980s, with little

overall change since the 1990s.

Long-term sedimentary records (1800–present)

All of the sediment proxies used in this study show a

single dramatic shift in the ecology of Lake Christina

occurring at approximately 1950 (64 yr for dating

uncertainty). Given the unprecedented responses of all

our proxy data, at least within the context of the past 200

years, we consider this to be a regime shift into a modern

period where anthropogenic drivers dominate how the

lake ecosystem functions (Fig. 7). Trends in TChla and

TP closely mimic each other, beginning to increase

approximately 10 years prior to the regime shift. The

accumulation of TOC is very stable from ;1800 through

1920, when it decreases until 1950 and then increases well

beyond historical rates starting in the late 1950s. The

turnover of sub-fossil diatom assemblages is summarized

by the DCA axis 1 (31% variance explained; Fig. 7e); the

community is relatively stable from ;1800 to 1950 and

composed of small colonial (Staurosirella pinnata, Pseu-

dostaurosira brevistriata, and Fragilaria capucina) and

solitary (Navicula cryptotenella and N. cf. libonensis)

benthic species, and the epiphytic taxa (Cocconeis

placentula and Gomphonema angustum) (Fig. 8). The shift

at 1950 is the only statistically significant change in the

assemblages, as compared to a random broken-stick
model. Following 1950 the communities include signifi-

cant percentages of tychoplanktonic species (Fig. 8),
namely, Fragilaria tenera and Aulacoseira ambigua. The

sub-fossil Bosmina densities increase dramatically post-
1950, however unlike the other proxies there is a response
to the turbid – clear state manipulations, and densities

drop to near historic levels during the clear-water states
(Fig. 7f ). The sediment record over the last 200 years

shows the stable historic period where a clear-water,
macrophyte-dominated state predominates, with a regime

shift at 1950 into a managed period where turbid,
phytoplankton-dominated states are predominant (Fig.

7g).

DISCUSSION

Lake response to biomanipulations

Since the 1960s, three top-down ecosystem manipula-
tions in turbid Lake Christina have induced temporary

shifts to a clear state, lasting 5–10 years, followed by a
return to a turbid state (Fig. 3). It is clear that the fish

kills of largely planktivores and benthivores induced a
trophic cascade, indirectly affecting summer primary

production and lake water turbidity (Hanson and Butler
1994a). Of particular importance was the establishment

of large bodied Daphnia spp. (D. galeata and D. pulex)
that grazed summer phytoplankton crops and affected

the summer algal bloom composition pre- and post-
manipulation (Hanson and Butler 1994a). In response to

the increase in Daphnia densities, Bosmina abundance
declined during the temporary clear states owing to

direct competition for resources. The response of
Bosmina densities is captured accurately by sub-fossil

remains in the lake sediments, adding additional
confirmation to the reliability of the sediment record
(Fig. 6). With the increase in summer Daphnia

abundance, chlorophyll a concentrations in the water
column begin to decrease (Fig. 3). There is also a

reduction in summer turbidity owing directly to the
reduction of phytoplankton (;15–40% of the seston)

and associated change in calcite precipitation (;10–60%
of the seston) due to a reduction in CO2 demand

(Hanson et al. 1990).
While the periods of manipulation induced a strong

epilimnetic response in summer primary production
(Hanson and Butler 1994a, b), the annual primary

production was unaffected by the temporary shift from
a turbid to clear state, evidenced by sedimentary records

of TChla, biogenic silica (data not shown), and TOC
MAR (Fig. 7). This finding is consistent with data from

a number of shallow lakes in western Minnesota
(including Lake Christina) suggesting that contempo-

rary net ecosystem production does not vary between
turbid and clear states during the summer (Domine
2011). The role of benthic production should be

considered as an explanation for this observation. Water
quality monitoring data for Lake Christina show that

FIG. 5. Biplot of the C:Natomic and d13C of organic matter
in modern algae (shaded triangles) and macrophytes (Myr-
iophyllum sibiricum [shortspike water milfoil], shaded circles;
Stuckenia pectinata [sago pondweed], shaded squares) and
sediment (open circles). The approximate trajectory of the
sediment core is highlighted by age markers.
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light is rarely limiting to benthic algae (i.e., PAR . 1%;

Table 1; Vadeboncoeur et al. 2008) in either a turbid or

clear state, over a range of [TP] (0.03–0.13 mg/L). As a

result, sub-fossil diatom communities throughout the

sediment record are dominated by benthic species,

ranging from 63% to 92% abundance (Fig. 8). There-

fore, benthic primary production must be an important

contributor to whole-lake primary production shaping

the trends in sediment TChla in both the turbid and

clear state, and a component that is not captured by

summer epilimnetic sampling.

Historical lake regime

The Lake Christina ecosystem was significantly

different during the 1800s and early 1900s, when

compared to the post-1950 period (Fig. 7). Sedimentary

measures of primary production (TChla and TOC

MAR) and trophic status (TP) suggest a less productive

ecosystem with lower nutrient concentrations. The

source of organic matter in the sediments during this

historical period is most attributable to macrophyte

remains over an algal source. From surveys of large

populations of Canvasback Ducks that depend on

Stuckenia pectinata (sago pondweed) as a critical food

source (Smith 1946), we can infer that the macrophyte

community of Lake Christina was dominated by this

plant and more than likely the lake was in a clear-water

state into the mid-1940s. Diatom communities in the

pre-1950 period are dominated by small, benthic,

colonial species, with low abundances of taxa (Cocconeis

placentula and Gomphonema angustum; Fig. 8). The

densities of Bosmina remains during this period are

similar to those present during the temporary macro-

phyte-dominated clear states following manipulations.

FIG. 6. Modern epilimnetic (dashed line) and paleolimnological (solid line) data for (a) total phosphorus, (b) total chlorophyll a
(TChl a), and (c) Bosmina density over the period from 1980 to present. Vertical black lines through each panel show the
manipulations of 1987 and 2003. Modern data represent a mean of five sampling sites throughout the open water season (n¼ 20–
56) with standard deviations and linear trend as a dashed line. Modern Bosmina densities are taken from the monitoring station
closest to the core site, and linear trends are shown through a LOWESS smooth at a span comparable to the sediment intervals (;5
years). Sediment records are shown as bars spanning the date of the sediment interval and solid trend lines. Turbid states (T) are
shaded gray, and clear states (C) are white.
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Settlement of the Lake Christina catchment began in

earnest in the late 1800s as homesteads and farms were

established. However, there is no indication of an

immediate post-settlement impact to the lake ecosystem.

The paleoecological data indicate that prior to human

settlement and into the early 1900s, Lake Christina was

a clear-water, macrophyte-dominated lake with lower

primary production than today.

Multiple drivers of long-term ecosystem change

There is a single significant regime shift in the 200-

year sedimentary record of Lake Christina that occurs at

approximately 1950 (Fig. 7). This perturbation of the

ecosystem represents the transition of the lake into the

modern managed period where a turbid state predom-

inates. The record of TP in sediments begins to increase

approximately 10 to 20 years prior to the lake moving

into the modern managed period. In accordance with

the theory of alternative stable states, a lake should be

past some threshold of eutrophication in order for algae

to be the dominant primary producer. We consider two

possibilities for increased nutrient loading to the lake

during the late 1930s through the 1940s, which are not

mutually exclusive: (1) increased agricultural activities

and changes to the surrounding landscape, and (2)

within-lake changes in nutrient cycling from waterfowl.

Aerial photographs from 1938 show that approximately

80–90% of the lake catchment is cultivated land, with

the remaining either wetlands or small woodland areas.

The farms were small and diverse, growing small grains

(e.g., oats, wheat) and alfalfa, and raising livestock.

Common practice in the late 1930s and 1940s was to

stockpile manure through the year for spreading during

the spring, which would lead to direct and indirect

nutrient additions to the lake. Alternately, or in

addition, the internal nutrient loading by migratory

waterfowl during the early 1940s, when populations

were probably close to 400 000 total ducks and coots

(Ordal 1966), could have mobilized formerly refractory

(SAV tubers) and allochthonous (birds feeding outside

the lake) nutrient pools through excretion from the

birds. For example, current total waterfowl populations

(600 000 in 1994; Table 1) could theoretically supply 114

kg P/d (Manny et al. 1994), which is an areal loading

rate of 2.1 kg P�ha�1�yr�1 (over a 30-day migratory

period), and is comparable to export coefficients from

agricultural land (1.9 kg P�ha�1�yr�1; Almendinger and

Murphy 2007). The sedimentary [TP] provides evidence

that Lake Christina underwent eutrophication prior to

the transition into the modern managed period; the

likely mechanism was through nutrient loading from the

surrounding catchment and/or waterfowl.

In 1936, a dam was built on the main outlet of the lake

and on the outlet of the adjoining downstream Pelican

Lake. Over the course of the next decade, the water

levels of Lake Christina increased by 0.25–0.75 m,

primarily in response to the dam on Pelican Lake

(Appendix: Fig. A1). This increase in water level

FIG. 7. Multiple sediment core proxies of (a) lake trophic
status (TP), (b, c) primary production (TChl a and total organic
carbon mass accumulation rate [TOC MAR]), and (d–f )
paleoecological sub-fossils (diatom assemblage turnover [DCA
axis 1], planktonic : benthic diatoms, and Bosmina remains)
over the last 200 years in Lake Christina. (g) The theoretical
stability landscape that describes the perturbation to the lake,
causing a regime shift into the modern managed period. The
dashed line through each panel represents the construction of a
dam with the sediment age dating error (;4 years). The shaded
area is the period of the regime shift.
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approximately doubles the depth of the main basin of

Lake Christina, even when considering the amount of

sediment infilling since 1940 (;0.15 m), but did not

increase the area of the lake basin (T. Carlson, personal

communication). By the late 1940s, the water level of

Lake Christina was comparable to today. In response to

the increasing water level, the relative abundance of

tychoplanktonic diatoms increased, and the assemblages

significantly changed. Into the mid-1950s Bosmina spp.

increased, which suggests a loss in macrophyte commu-

nities based on observed high Bosmina densities during

turbid states (Fig. 6). The loss of macrophytes in

response to hydrologic fluctuations is not novel and

similar losses have been documented with relatively

modest increases in water level (Wallsten and Forsgren

1989), while decreases in water levels have encouraged

the establishment of macrophytes (Van Geest et al.

2007). Successful biomanipulations in Lake Christina

have demonstrated the indirect and direct impact that

top-down pressures by planktivorous and benthivorous

fish have on the presence of macrophytes. The change in

hydrology must have decreased the prevalence of

natural winter kills of fish, further suppressing the

macrophyte communities.

Climatic variability alone does not appear to induce a

regime shift in Lake Christina. The construction of the

dam occurs at a time when the region was emerging from

the multi-annual drought of the 1930s, where increases in

regional humidity contributed to the increasing water

level (Schubert et al. 2004, Cook and Krusic 2008).

Despite the depth of Lake Christina being influenced

mainly by a dam on downstream Lake Pelican for the last

70 years, there is a statistically significant portion of the

water level variation explained by climate, summarized by

the Palmer Drought Severity Index (PDSI; r¼ 0.56, P ,

0.001, df¼ 51; Appendix: Fig. A1). During 20th-century

droughts when the PDSI is similar to the 1930s (e.g., 1976

and 1988–1989) the water level of Lake Christina does

not respond as dramatically, suggesting that the dam has

decreased how sensitive the lake level is to drought, and

there is no distinct ecological response. Droughts of the

early 1820s and 1860s during the historical period of the

lake most likely decreased the water level of the lake, but

again there is no detectable ecological response in the

sediment record. Therefore, it appears that the lake level

was influenced by the increase in humidity at the end of

the dust bowl, but the construction of the dam is what

sustained a high water level under nutrient-enriched

conditions and induced the regime shift.

In summary, the regime shift in Lake Christina was a

consequence of multiple stressors over a ;30-year

period in the mid-1900s (Fig. 7). The eutrophication

that began in the 1930s to 1940s promoted higher

phytoplankton abundance. This may have resulted in a

higher fish biomass favoring fewer piscivores and greater

numbers of planktivores and benthivores (Jeppesen et al.

2000). Reduced chances of natural winterkill due to

greater water depths following construction of the dam

and increased annual rainfall sustained higher biomass

of undesirable fish, favoring the turbid state. The

synergy among eutrophication, dam construction, and

climatic variability conspired to cause the regime shift to

a period where a turbid lake state persists.

FIG. 8. Sub-fossil diatom assemblages in Lake Christina since ;1750 AD. Individual species .5% abundance are shown as
black bars, and genus-level summaries are shown as gray bars. Dashed lines mark the lake manipulations, while the solid line marks
the significant shift in diatom communities from the historical period.
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Alternative stable state theory, regime shifts,

and lake management

Over the last 200 years, the Lake Christina ecosystem

has undergone a regime shift from a historically stable

period where a clear-water state was dominant to a

period where a turbid state persists. The functioning of

the lake ecosystem is now managed and biomanipulated

clear-water states are unstable. This long-term trajectory

of the lake and the history of biomanipulations from

Lake Christina help demonstrate the concept of stability

‘‘landscapes’’ (sensu Scheffer and Carpenter 2003) and

alternative stable states, and effectively link theory to

observation. In an unconstrained ordination of the sub-

fossil diatom communities with the sediment TP data

passively overlain, the main direction of diatom commu-

nity turnover, from a stable, clear state (;1750–1946) to

a period where the turbid state persists (post-1950), is

along DCA axis 1, which coincides with an increase along

the TP gradient (Fig. 9a). During the period of ;1750–

1946 there is a low influence by external conditions

(nutrients) and the ecosystem is relatively stable. As the

influence of nutrients on the lake increases at the end of

the 1930s through the late 1940s, the stability landscape

begins to change and Lake Christina becomes more

susceptible (unstable) to a catastrophic regime shift or

perturbation. This regime shift takes place during the

mid-1950s when water levels are high, macrophytes are

lost and nutrients are sufficiently elevated to promote

phytoplankton dominance, reducing the stability of the

historical clear-water state, and pushing the lake into the

modern managed period dominated by a turbid state

(Fig. 9b). In the modern managed period, Lake Christina

undergoes three top-down manipulations pushing the

ecosystem into a temporary or unstable clear state. The

sediment record shows that each of these manipulations

was not associated with reductions in nutrients, whether

catchment-derived or internally cycled. Instead, each

biomanipulation moves the ecosystem back and forth

on a turbidity gradient, but without the reduction of

nutrients to limit algal production a return to an

ecosystem similar to the stable historical clear state is

not possible (Fig. 9).

Managed lake ecosystems are commonplace in today’s

landscapes. The future rehabilitation of Lake Christina is

now reliant on a hydrologic drawdown system to emulate

natural variability in water levels and induce periodic

winterkill of planktivorous and benthivorous fish. Given

the lake’s history of biomanipulations, we know this

approach will be successful in the short term for inducing

clear-water states. However, our results indicate that it is

unlikely Lake Christina will return to the persistent or

stable clear state that characterized the historic ecological

period. Similar findings in other studies of biomanipula-

tions indicate that long-term improvements may not be

sustainable without additional interventions (e.g., nutri-

ent reduction; McQueen 1998, Jeppesen et al. 2007). In an

attempt to reduce nutrient inputs, considerable efforts

initiated in the 1980s by the Minnesota Conservation

Reserve Program, U.S. Fish and Wildlife Service, and

Minnesota Department of Natural Resources have

reduced the percent cover of cultivated land and increased

the number of wetlands in the catchment. Despite these

efforts the lake has remained eutrophic, suggesting

internal nutrient cycling may be important. The status

of the lake as an important waterfowl staging area

continues to capture the interest and willingness of the

public to support management efforts, where the short-

term improvement justifies the cost of biomanipulations

(Hansson et al. 1998). Lake Christina is a prime example

of an ecosystem forced by multiple stressors into a new

long-term managed period, where manipulated clear-

water states are temporary, managed features.

FIG. 9. (a) DCA of sub-fossil diatom assemblages with the
sediment TP concentration for each corresponding interval
passively contoured by thin-plate splines over ordination space.
Shaded circles are intervals when Lake Christina is in a turbid
state, while open circles are clear state. (b) Ordination space
from panel (a) overlain by the theoretical model for nutrient-
driven regime shifts (sensu Scheffer and Carpenter 2003).
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SUPPLEMENTAL MATERIAL

Appendix

A figure showing water level data for Lake Christina since 1936, correlation with instrumental Palmer Drought Severity Index
(PDSI) data, and regional tree-ring reconstructed PDSI data over the last 200 years (Ecological Archives A022-077-A1).
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