26 research outputs found

    Salty ice and the dilemma of ocean exoplanet habitability

    Full text link
    Habitability of exoplanet's deepest oceans could be limited by the presence of high-pressure ices at their base. New work demonstrates that efficient chemical transport within deep planetary ice mantles is possible through significant salt incorporation within the high-pressure ice

    Experimental and Simulation Efforts in the Astrobiological Exploration of Exooceans

    Get PDF
    The icy satellites of Jupiter and Saturn are perhaps the most promising places in the Solar System regarding habitability. However, the potential habitable environments are hidden underneath km-thick ice shells. The discovery of Enceladus’ plume by the Cassini mission has provided vital clues in our understanding of the processes occurring within the interior of exooceans. To interpret these data and to help configure instruments for future missions, controlled laboratory experiments and simulations are needed. This review aims to bring together studies and experimental designs from various scientific fields currently investigating the icy moons, including planetary sciences, chemistry, (micro-)biology, geology, glaciology, etc. This chapter provides an overview of successful in situ, in silico, and in vitro experiments, which explore different regions of interest on icy moons, i.e. a potential plume, surface, icy shell, water and brines, hydrothermal vents, and the rocky core

    Pétrologie et rhéologie des glaces planétaires de haute pression

    Get PDF
    H2O ice is found in a variety of planetary environments, notably in the form of high pressure polymorphs inside icy moons and extrasolar ocean planets. The great diversity of thermodynamic conditions predicted inside such planetary bodies, reveals the need for new experimental and computational data to allow modeling of their internal structure and dynamics.Structural and spectral properties of H2O pure ices have been intensively studied, but surprisingly there is a lack of petrological data on impurities rich ice solid solutions. This Ph.D. thesis work focused on the study of ice VI and ice VII fusion curves in the H2O-NaCl binary, using diamond anvil cell and Raman spectroscopy. We later determined the partitioning of the NaCl analog salt, RbI, between ice VI and VII and the aqueous fluid using X- ray fluorescence and X-ray diffraction techniques at the European Synchrotron Research Facility (Grenoble). Our results enable us to observe a density inversion between ice VI and the salty fluid, and to measure a strong difference in salt partitioning between ice VI and ice VII with a partition coefficient of Kd(VI-VII)=4.5(±2.7)10-2. Inside the largest H2O rich planetary bodies, called ocean planets, the icy mantle, putatively more than 1000 km thick, shelters an ultra high pressure ice form called ice X. This H2O ice phase is unique because of its ionic crystallographic structure, in contrast with lower pressure ices polymorphs, all being molecular solids. This characteristic coupled with the fact that no data are available yet on its mechanical properties, encouraged us to study its elastic and plastic properties. Using ab initio calculations and the Peierls Nabarro model, I showed the strong variation of elastic anisotropy with increasing pressure and determined the dominant slip system inside the structure of ice X over its entire pressure stability range from 100 to 350 GPa. Our calculations suggest that plasticity in ice X is dominated by displacement always occurring on the {110} glide plane. Also, it reveals that the {110} glide system is dominant below 250 GPa and that the {110} slip system controls the plasticity of ice X. Our results also show that, if elastic anisotropy of ice X is strongly increasing with increasing pressure, the plasticity becomes almost isotropic at 350 GPa.La glace de H2O est prĂ©sente dans de nombreux environnements planĂ©taires, et notamment sous forme de polymorphe de haute pression au sein des satellites de glaces ainsi que dans le manteau des planĂštes extrasolaires, dites planĂštes ocĂ©an. La diversitĂ© des conditions thermodynamiques prĂ©dite au sein de ces corps planĂ©taires a soulignĂ© le besoin de nouvelles donnĂ©es de laboratoire et de calculs sur les glaces de H2O afin de pouvoir modĂ©liser leur Ă©volution et leur structure interne.Si les propriĂ©tĂ©s structurales et spectroscopiques des pĂŽles purs de ces glaces sont dĂ©jĂ  relativement bien connues, une description pĂ©trologique plus rĂ©aliste des solutions solides et des phases riches en impuretĂ©, manque encore Ă  la communautĂ©. Ce travail de thĂšse s’est concentrĂ© sur l’étude de la fusion des glaces VI et VII dans le binaire H2O-NaCl grĂące aux techniques de cellules Ă  enclumes en diamants et la spectroscopie vibrationelle Raman. Ces donnĂ©es ont Ă©tĂ© complĂ©tĂ©es par des mesures du fractionnement du sel analogue RbI entre les glace VI et VII et le fluide aqueux en utilisant la cartographie de fluorescence X et de diffraction des rayons X rĂ©alisĂ©es Ă  l’European Synchrotron Research Facility (Grenoble). Ceci as permis de mettre en Ă©vidence une inversion de densitĂ© entre le fluide riche en sel et la glace VI et de rĂ©vĂ©ler une forte diffĂ©rence de partage du sel entre la glace VI et la glace VII avec un coefficient de partage du RbI estimĂ© Ă  Kd(VI-VII)=4.5(±2.7)10-2.Au sein des plus gros corps riches en H2O appelĂ©s planĂšte ocĂ©an, le manteau de glace potentiellement Ă©pais de plus de 1000 km abrite un type de glace de ultra haute pression appelĂ© glace X. Cette phase de la glace d’eau est unique de part sa structure cristallographique ionique, contrairement aux autres glaces de plus basse pression, toutes de structure molĂ©culaire. Cette caractĂ©ristique structurale et l’absence de donnĂ©es concernant ses propriĂ©tĂ©s mĂ©caniques ont motivĂ© l’étude de ses propriĂ©tĂ©s Ă©lastiques et plastiques. Ainsi Ă  partir de calcul ab initio et du modĂšle de Peierls Nabarro, j’ai pu dĂ©terminer une forte variation de l’anisotropie Ă©lastique avec la pression, les diffĂ©rentes structures de cƓurs des dislocations vis et coin et les systĂšmes de glissement prĂ©fĂ©rentiels au sein de la glace X dans son champ de stabilitĂ© de 100 Ă  350 GPa. Nos calculs suggĂšrent que la dĂ©formation de la glace X est toujours localisĂ©e sur le plan {110} et que le systĂšme {110} contrĂŽle la dĂ©formation plastique en dessous de 250 GPa et que le systĂšme {110} est dominant Ă  plus haute pression. Nos rĂ©sultats montrent aussi que si l’anisotropie Ă©lastique augmente rapidement avec la pression, la plasticitĂ© de la glace X devient quasi-isotrope Ă  350 GPa

    Petrology and rheology of high pressure planetary ices

    No full text
    La glace de H2O est prĂ©sente dans de nombreux environnements planĂ©taires, et notamment sous forme de polymorphe de haute pression au sein des satellites de glaces ainsi que dans le manteau des planĂštes extrasolaires, dites planĂštes ocĂ©an. La diversitĂ© des conditions thermodynamiques prĂ©dite au sein de ces corps planĂ©taires a soulignĂ© le besoin de nouvelles donnĂ©es de laboratoire et de calculs sur les glaces de H2O afin de pouvoir modĂ©liser leur Ă©volution et leur structure interne.Si les propriĂ©tĂ©s structurales et spectroscopiques des pĂŽles purs de ces glaces sont dĂ©jĂ  relativement bien connues, une description pĂ©trologique plus rĂ©aliste des solutions solides et des phases riches en impuretĂ©, manque encore Ă  la communautĂ©. Ce travail de thĂšse s’est concentrĂ© sur l’étude de la fusion des glaces VI et VII dans le binaire H2O-NaCl grĂące aux techniques de cellules Ă  enclumes en diamants et la spectroscopie vibrationelle Raman. Ces donnĂ©es ont Ă©tĂ© complĂ©tĂ©es par des mesures du fractionnement du sel analogue RbI entre les glace VI et VII et le fluide aqueux en utilisant la cartographie de fluorescence X et de diffraction des rayons X rĂ©alisĂ©es Ă  l’European Synchrotron Research Facility (Grenoble). Ceci as permis de mettre en Ă©vidence une inversion de densitĂ© entre le fluide riche en sel et la glace VI et de rĂ©vĂ©ler une forte diffĂ©rence de partage du sel entre la glace VI et la glace VII avec un coefficient de partage du RbI estimĂ© Ă  Kd(VI-VII)=4.5(±2.7)10-2.Au sein des plus gros corps riches en H2O appelĂ©s planĂšte ocĂ©an, le manteau de glace potentiellement Ă©pais de plus de 1000 km abrite un type de glace de ultra haute pression appelĂ© glace X. Cette phase de la glace d’eau est unique de part sa structure cristallographique ionique, contrairement aux autres glaces de plus basse pression, toutes de structure molĂ©culaire. Cette caractĂ©ristique structurale et l’absence de donnĂ©es concernant ses propriĂ©tĂ©s mĂ©caniques ont motivĂ© l’étude de ses propriĂ©tĂ©s Ă©lastiques et plastiques. Ainsi Ă  partir de calcul ab initio et du modĂšle de Peierls Nabarro, j’ai pu dĂ©terminer une forte variation de l’anisotropie Ă©lastique avec la pression, les diffĂ©rentes structures de cƓurs des dislocations vis et coin et les systĂšmes de glissement prĂ©fĂ©rentiels au sein de la glace X dans son champ de stabilitĂ© de 100 Ă  350 GPa. Nos calculs suggĂšrent que la dĂ©formation de la glace X est toujours localisĂ©e sur le plan {110} et que le systĂšme {110} contrĂŽle la dĂ©formation plastique en dessous de 250 GPa et que le systĂšme {110} est dominant Ă  plus haute pression. Nos rĂ©sultats montrent aussi que si l’anisotropie Ă©lastique augmente rapidement avec la pression, la plasticitĂ© de la glace X devient quasi-isotrope Ă  350 GPa.H2O ice is found in a variety of planetary environments, notably in the form of high pressure polymorphs inside icy moons and extrasolar ocean planets. The great diversity of thermodynamic conditions predicted inside such planetary bodies, reveals the need for new experimental and computational data to allow modeling of their internal structure and dynamics.Structural and spectral properties of H2O pure ices have been intensively studied, but surprisingly there is a lack of petrological data on impurities rich ice solid solutions. This Ph.D. thesis work focused on the study of ice VI and ice VII fusion curves in the H2O-NaCl binary, using diamond anvil cell and Raman spectroscopy. We later determined the partitioning of the NaCl analog salt, RbI, between ice VI and VII and the aqueous fluid using X- ray fluorescence and X-ray diffraction techniques at the European Synchrotron Research Facility (Grenoble). Our results enable us to observe a density inversion between ice VI and the salty fluid, and to measure a strong difference in salt partitioning between ice VI and ice VII with a partition coefficient of Kd(VI-VII)=4.5(±2.7)10-2. Inside the largest H2O rich planetary bodies, called ocean planets, the icy mantle, putatively more than 1000 km thick, shelters an ultra high pressure ice form called ice X. This H2O ice phase is unique because of its ionic crystallographic structure, in contrast with lower pressure ices polymorphs, all being molecular solids. This characteristic coupled with the fact that no data are available yet on its mechanical properties, encouraged us to study its elastic and plastic properties. Using ab initio calculations and the Peierls Nabarro model, I showed the strong variation of elastic anisotropy with increasing pressure and determined the dominant slip system inside the structure of ice X over its entire pressure stability range from 100 to 350 GPa. Our calculations suggest that plasticity in ice X is dominated by displacement always occurring on the {110} glide plane. Also, it reveals that the {110} glide system is dominant below 250 GPa and that the {110} slip system controls the plasticity of ice X. Our results also show that, if elastic anisotropy of ice X is strongly increasing with increasing pressure, the plasticity becomes almost isotropic at 350 GPa

    Local-Basis-Function Equation of State for Ice VII–X to 450 GPa at 300 K

    No full text
    Helmholtz energy of ice VII–X is determined in a pressure regime extending to 450 GPa at 300 K using local-basis-functions in the form of b-splines. The new representation for the equation of state is embedded in a physics-based inverse theory framework of parameter estimation. Selected pressures as a function of volume from 14 prior experimental studies and two theoretical studies constrain the behavior of Helmholtz energy. Separately measured bulk moduli, not used to construct the representation, are accurately replicated below about 20 GPa and above 60 GPa. In the intermediate range of pressure, the experimentally determined moduli are larger and have greater scatter than values predicted using the Helmholtz representation. Although systematic error in the determination of elastic moduli is possible and likely, the alternative hypothesis is a slow relaxation time associated with changes in proton mobility or the ice VII to X transition. A correlation is observed between anomalies in the pressure derivative of the predicted bulk modulus and previously suggested higher-order phase transitions. Improved determinations of elastic properties at high pressure would allow refinement of the current equation of state. More generally, the current method of data assimilation is broadly applicable to other materials in high-pressure studies and for investigations of planetary interiors

    Dynamics of Mixed Clathrate-Ice Shells on Ocean Worlds

    No full text
    International audienceThe habitability of oceans within icy worlds depends on material and heat transport through their outer ice shells. Previous work shows a methane clathrate layer at the upper surface of the ice shell of Titan thickens the convecting region, while on Pluto a clathrate layer at the base of the ice shell hinders convection. In this way, the dynamics of clathrate-ice shells may be essential to the thermal evolution and habitability of ocean worlds. However, studies to date have not addressed the dynamics that determine the location of clathrates within the ice shell. Here, we show that, in contrast to previous studies, clathrates accumulating at the base of the ice shell are entrained throughout the shell. Clathrates are stiffer than ice. As a result, entrainment slows convection and thickens the conductive lid across a range of ocean worlds, potentially preserving sub-ice oceans but limiting avenues for material transport into them

    Solvothermal synthesis, structure and magnetic properties of heterometallic coordination polymers based on a phenolato-oxamato cobidentate-tridentate ligand

    No full text
    International audienceThe use of solvothermal conditions has succesfully led to the preparation of heterometallic 1D coordination polymers from a co-bidentate-tridentate phenolato-oxamato ligand. The reaction of the N-(2-hydoxyphenyl)oxamic acid (ohpma) with acetate salts of transition metal ions at 80°C has yielded the heterobimetallic [Cu(ohpma)M(OAc)(DMF)2] (M = Co (1); Mn (2)) and the heterotrimetallic [Cu(ohpma)Co0.57Mn0.43(OAc)(DMF)2] (3) chain compounds. Single-crystal and powder diffraction studies show that the polymers are isostructural. Magnetic studies suggest the existence of an inter-chain two-dimensional antiferromagnetic interaction taking place in compounds 1-3

    Equations of state of ice VI and ice VII at high pressure and high temperature

    No full text
    High-pressure H2O polymorphs among which ice VI and ice VII are abundant in the interiors of large icy satellites and exo-planets. Knowledge of the elastic properties of these pure H2O ices at high-temperature and high-pressure is thus crucial to decipher the internal structure of icy bodies. In this study we assess for the first time the pressure-volume-temperature ( PVT) relations of both polycrystalline pure ice VI and ice VII at high pressures and temperatures from 1 to 9 GPa and 300 to 450 K, respectively, by using in situ synchrotron X-ray diffraction. The PVT data are adjusted to a second-order Birch-Murnaghan equation of state and give V-0 = 14.17(2) cm(3) mol(-1), K-0 = 14.05(23) GPa, and alpha(0) = 14.6(14) x 10(-5) K-1 for ice VI and V-0 = 12.49(1) cm(3) mol(-1), K-0 = 20.15(16) GPa, and alpha(0) = 11.6(5) x 10(-5) K-1 for ice VII. (c) 2014 AIP Publishing LLC

    Carbonic acid monohydrate

    No full text
    In the water-carbon dioxide system, above a pressure of 4.4 GPa, a crystalline phase consisting of an adduct of the two substances can be observed to exist in equilibrium with the aqueous fluid. The phase had been found to be triclinic, and its unit-cell parameters determined, but the full crystalline and even molecular structure remained undetermined. Here, we report new diamond-anvil cell, X-ray diffraction data of a quality sufficient to allow us to propose a full structure. The crystal exists in the P1 space group. Unit-cell parameters (at 6.5 GPa and 140 °C) are a = 5.8508(14), b = 6.557(5), c = 6.9513(6) Å, α = 88.59(2)°, ÎČ = 79.597(13)°, and γγ = 67.69(4)°. Direct solution for the heavy atoms (carbon and oxygen) revealed CO3_3 units, with co-planar, but isolated, O units. Construction of a hydrogen network, in accordance with the requirements of hydrogen bonding and with minimum allowed distances between non-bonded atoms, indicates that the phase consists of a monohydrate of carbonic acid (H2_2CO3_3·H2_2O) with the carbonic acid molecule in the cis-trans configuration. This is the first experimental determination of the crystalline structure of a H2_2CO3_3 compound. The structure serves as a guide for ab initio calculations that have until now explored only anhydrous H2_2CO3_3 solids, while validating calculations that indicated that high pressures should stabilize H2_2CO3_3 in the solid state. If 4.4 GPa is the lowest pressure at which the phase is thermodynamically stable, this probably precludes its existence in our solar system, although it may exist on larger, volatile-rich exoplanets. If, however, its range of stability extends to lower pressures at lower temperatures (which possibility has not yet been adequately explored), then it might have been be a stable form of CO2_2 within the water-rich moons and dwarf planets prior to differentiation and might still exist on an undifferentiated Callisto
    corecore