10 research outputs found
A generative angular model of protein structure evolution
Recently described stochastic models of protein evolution have demonstrated that the inclusion of structural information in addition to amino acid sequences leads to a more reliable estimation of evolutionary parameters. We present a generative, evolutionary model of protein structure and sequence that is valid on a local length scale. The model concerns the local dependencies between sequence and structure evolution in a pair of homologous proteins. The evolutionary trajectory between the two structures in the protein pair is treated as a random walk in dihedral angle space, which is modeled using a novel angular diffusion process on the two-dimensional torus. Coupling sequence and structure evolution in our model allows for modeling both “smooth” conformational changes and “catastrophic” conformational jumps, conditioned on the amino acid changes. The model has interpretable parameters and is comparatively more realistic than previous stochastic models, providing new insights into the relationship between sequence and structure evolution. For example, using the trained model we were able to identify an apparent sequence–structure evolutionary motif present in a large number of homologous protein pairs. The generative nature of our model enables us to evaluate its validity and its ability to simulate aspects of protein evolution conditioned on an amino acid sequence, a related amino acid sequence, a related structure or any combination thereof
How reliably can we predict the reliability of protein structure predictions?
Background:
Comparative methods have been the standard techniques for in silico protein structure prediction. The prediction is based on a multiple alignment that contains both reference sequences with known structures and the sequence whose unknown structure is predicted. Intensive research has been made to improve the quality of multiple alignments, since misaligned parts of the multiple alignment yield misleading predictions. However, sometimes all methods fail to predict the correct alignment, because the evolutionary signal is too weak to find the homologous parts due to the large number of mutations that separate the sequences.
Results:
Stochastic sequence alignment methods define a posterior distribution of possible multiple alignments. They can highlight the most likely alignment, and above that, they can give posterior probabilities for each alignment column. We made a comprehensive study on the HOMSTRAD database of structural alignments, predicting secondary structures in four different ways. We showed that alignment posterior probabilities correlate with the reliability of secondary structure predictions, though the strength of the correlation is different for different protocols. The correspondence between the reliability of secondary structure predictions and alignment posterior probabilities is the closest to the identity function when the secondary structure posterior probabilities are calculated from the posterior distribution of multiple alignments. The largest deviation from the identity function has been obtained in the case of predicting secondary structures from a single optimal pairwise alignment. We also showed that alignment posterior probabilities correlate with the 3D distances between C α amino acids in superimposed tertiary structures.
Conclusion:
Alignment posterior probabilities can be used to a priori detect errors in comparative models on the sequence alignment level. </p
Phylogenetic Detection of Recombination with a Bayesian Prior on the Distance between Trees
Genomic regions participating in recombination events may support distinct topologies, and phylogenetic analyses should incorporate this heterogeneity. Existing phylogenetic methods for recombination detection are challenged by the enormous number of possible topologies, even for a moderate number of taxa. If, however, the detection analysis is conducted independently between each putative recombinant sequence and a set of reference parentals, potential recombinations between the recombinants are neglected. In this context, a recombination hotspot can be inferred in phylogenetic analyses if we observe several consecutive breakpoints. We developed a distance measure between unrooted topologies that closely resembles the number of recombinations. By introducing a prior distribution on these recombination distances, a Bayesian hierarchical model was devised to detect phylogenetic inconsistencies occurring due to recombinations. This model relaxes the assumption of known parental sequences, still common in HIV analysis, allowing the entire dataset to be analyzed at once. On simulated datasets with up to 16 taxa, our method correctly detected recombination breakpoints and the number of recombination events for each breakpoint. The procedure is robust to rate and transition∶transversion heterogeneities for simulations with and without recombination. This recombination distance is related to recombination hotspots. Applying this procedure to a genomic HIV-1 dataset, we found evidence for hotspots and de novo recombination
BIOINFORMATICS APPLICATIONS NOTE
Genetics and population analysis Vol. 22 no. 18 2006, pages 2317–2318 doi:10.1093/bioinformatics/btl153 GeneRecon—a coalescent based tool for fine-scale association mappin
The Icelandic Cancer Project--a population-wide approach to studying cancer.
Cancer initiation and progression require a complex interaction of genetic, environmental and clinical factors. Most research, however, has been focused on only a narrow aspect of the disease process. Data generated by the Human Genome Project, as well as large-scale molecular analysis of tumours, have indicated that a more systematic approach, in which the biological information is integrated with clinical features, is warranted. There are many aspects of the Icelandic population that make it well suited for such a broad-based approach. The Icelandic Cancer Project was therefore initiated to build a population-based clinical genomics database and biobank that can be used to study cancer - from genetic predisposition to clinical outcome