235 research outputs found

    Multiple imputation for continuous variables using a Bayesian principal component analysis

    Full text link
    We propose a multiple imputation method based on principal component analysis (PCA) to deal with incomplete continuous data. To reflect the uncertainty of the parameters from one imputation to the next, we use a Bayesian treatment of the PCA model. Using a simulation study and real data sets, the method is compared to two classical approaches: multiple imputation based on joint modelling and on fully conditional modelling. Contrary to the others, the proposed method can be easily used on data sets where the number of individuals is less than the number of variables and when the variables are highly correlated. In addition, it provides unbiased point estimates of quantities of interest, such as an expectation, a regression coefficient or a correlation coefficient, with a smaller mean squared error. Furthermore, the widths of the confidence intervals built for the quantities of interest are often smaller whilst ensuring a valid coverage.Comment: 16 page

    Unconditional quantum cloning of coherent states with linear optics

    Full text link
    A scheme for optimal Gaussian cloning of optical coherent states is proposed and experimentally demonstrated. Its optical realization is based entirely on simple linear optical elements and homodyne detection. The optimality of the presented scheme is only limited by detection inefficiencies. Experimentally we achieved a cloning fidelity of about 65%, which almost touches the optimal value of 2/3.Comment: Phys. Rev. Lett. Volume 94, Number 24, p. 24050

    Measurement of spectral functions of ultracold atoms in disordered potentials

    Full text link
    We report on the measurement of the spectral functions of noninteracting ultracold atoms in a three-dimensional disordered potential resulting from an optical speckle field. Varying the disorder strength by 2 orders of magnitude, we observe the crossover from the "quantum" perturbative regime of low disorder to the "classical" regime at higher disorder strength, and find an excellent agreement with numerical simulations. The method relies on the use of state-dependent disorder and the controlled transfer of atoms to create well-defined energy states. This opens new avenues for experimental investigations of three-dimensional Anderson localization

    Experimental purification of coherent states

    Full text link
    We propose a scheme for optimal Gaussian purification of coherent states from several imperfect copies. The proposal is experimentally demonstrated for the case of two copies of a coherent state sent through independent noisy channels. Our purification protocol relies on only linear optics and an ancilla vacuum state, rendering this approach an interesting alternative to the more complex protocols of entanglement distillation and quantum error correction

    Imputation de données manquantes pour des données mixtes via les méthodes factorielles grùce à missMDA

    No full text
    Imputation de données manquantes pour des données mixtes via les méthodes factorielles grùce à missMD

    Efficient polarization squeezing in optical fibers

    Full text link
    We report on a novel and efficient source of polarization squeezing using a single pass through an optical fiber. Simply passing this Kerr squeezed beam through a carefully aligned lambda/2 waveplate and splitting it on a polarization beam splitter, we find polarization squeezing of up to 5.1 +/- 0.3 dB. The experimental setup allows for the direct measurement of the squeezing angle.Comment: 4 pages, 4 figure

    Guided Quasicontinuous Atom Laser

    Full text link
    We report the first realization of a guided quasicontinuous atom laser by rf outcoupling a Bose-Einstein condensate from a hybrid optomagnetic trap into a horizontal atomic waveguide. This configuration allows us to cancel the acceleration due to gravity and keep the de Broglie wavelength constant at 0.5 Ό\mum during 0.1 s of propagation. We also show that our configuration, equivalent to pigtailing an optical fiber to a (photon) semiconductor laser, ensures an intrinsically good transverse mode matching.Comment: version published in Phys. Rev. Lett. 97, 200402 (2006

    Application of lasers to ultracold atoms and molecules

    Get PDF
    In this review, we discuss the impact of the development of lasers on ultracold atoms and molecules and their applications. After a brief historical review of laser cooling and Bose-Einstein condensation, we present important applications of ultra cold atoms, including time and frequency metrology, atom interferometry and inertial sensors, atom lasers, simulation of condensed matter systems, production and study of strongly correlated systems, and production of ultracold molecules.Comment: Review paper written in the name of IFRAF to celebrate 50 years of lasers and their applications to cold atom physics; 15 pages, 2 figures; to appear in Comptes Rendus de l'Academie des Sciences, Pari
    • 

    corecore