34 research outputs found

    Regenerating 1 and 3b Gene Expression in the Pancreas of Type 2 Diabetic Goto-Kakizaki (GK) Rats

    Get PDF
    International audienceRegenerating (REG) proteins are associated with islet development, b-cell damage, diabetes and pancreatitis. Particularly, REG-1 and REG-3-beta are involved in cell growth/survival and/or inflammation and the Reg1 promoter contains interleukin-6 (IL-6)-responsive elements. We showed by transcriptome analysis that islets of Goto-Kakizaki (GK) rats, a model of spontaneous type 2 diabetes, overexpress Reg1, 3a, 3b and 3c, vs Wistar islets. Goto-Kakizaki rat islets also exhibit increased cytokine/chemokine expression/release, particularly IL-6. Here we analyzed Reg1 and Reg3b expression and REG-1 immuno-localization in the GK rat pancreas in relationship with inflammation. Isolated pancreatic islets and acinar tissue from male adult Wistar and diabetic GK rats were used for quantitative RT-PCR analysis. REG-1 immunohistochemistry was performed on paraffin sections with a monoclonal anti-rat REG-1 antibody. Islet cytokine/chemokine release was measured after 48 h-culture. Islet macrophage-positive area was quantified on cryostat sections using anti-CD68 and major histocompatibility complex (MHC) class II antibodies. Pancreatic exocrine-to-endocrine Reg1 and Reg3b mRNA ratios were markedly increased in Wistar vs GK rats. Conversely, both genes were upregulated in isolated GK rat islets. These findings were unexpected, because Reg genes are expressed in the pancreatic acinar tissue. However, we observed REG-1 protein labeling in acinar peri-ductal tissue close to islets and around large, often disorganized, GK rat islets, which may retain acinar cells due to their irregular shape. These large islets also showed peri-islet macrophage infiltration and increased release of various cytokines/ chemokines, particularly IL-6. Thus, IL-6 might potentially trigger acinar REG-1 expression and secretion in the vicinity of large diabetic GK rat islets. This increased acinar REG-1 expression might reflect an adaptive though unsuccessful response to deleterious microenvironment

    Diabetic β-Cells Can Achieve Self-Protection against Oxidative Stress through an Adaptive Up-Regulation of Their Antioxidant Defenses

    Get PDF
    Background Oxidative stress (OS), through excessive and/or chronic reactive oxygen species (ROS), is a mediator of diabetes-related damages in various tissues including pancreatic β-cells. Here, we have evaluated islet OS status and β-cell response to ROS using the GK/Par rat as a model of type 2 diabetes. Methodology/Principal Findings Localization of OS markers was performed on whole pancreases. Using islets isolated from 7-day-old or 2.5-month-old male GK/Par and Wistar control rats, 1) gene expression was analyzed by qRT-PCR; 2) insulin secretion rate was measured; 3) ROS accumulation and mitochondrial polarization were assessed by fluorescence methods; 4) antioxidant contents were quantified by HPLC. After diabetes onset, OS markers targeted mostly peri-islet vascular and inflammatory areas, and not islet cells. GK/Par islets revealed in fact protected against OS, because they maintained basal ROS accumulation similar or even lower than Wistar islets. Remarkably, GK/Par insulin secretion also exhibited strong resistance to the toxic effect of exogenous H2O2 or endogenous ROS exposure. Such adaptation was associated to both high glutathione content and overexpression (mRNA and/or protein levels) of a large set of genes encoding antioxidant proteins as well as UCP2. Finally, we showed that such a phenotype was not innate but spontaneously acquired after diabetes onset, as the result of an adaptive response to the diabetic environment. Conclusions The GK/Par model illustrates the effectiveness of adaptive response to OS by beta-cells to achieve self-tolerance. It remains to be determined to what extend such islet antioxidant defenses upregulation might contribute to GK/Par beta-cell secretory dysfunction

    Islet Endothelial Activation and Oxidative Stress Gene Expression Is Reduced by IL-1Ra Treatment in the Type 2 Diabetic GK Rat

    Get PDF
    Inflammation followed by fibrosis is a component of islet dysfunction in both rodent and human type 2 diabetes. Because islet inflammation may originate from endothelial cells, we assessed the expression of selected genes involved in endothelial cell activation in islets from a spontaneous model of type 2 diabetes, the Goto-Kakizaki (GK) rat. We also examined islet endotheliuml/oxidative stress (OS)/inflammation-related gene expression, islet vascularization and fibrosis after treatment with the interleukin-1 (IL-1) receptor antagonist (IL-1Ra)

    Glucose Homeostasis in Pre-diabetic NOD and Lymphocyte-Deficient NOD/SCID Mice During Gestation

    No full text
    BACKGROUND: Unlike other strains, spontaneously type 1 non-obese diabetic (NOD) mice experience transient hyperinsulinemia after weaning. The same applies for NOD/SCID mice, which lack functional lymphocytes, and unlike NOD mice, do not develop insulitis and diabetes like NOD mice. AIMS: Given that β-cell stimulation is a natural feature of gestation, we hypothesized that glucose homeostasis is disturbed in gestate pre-diabetic NOD and non-diabetic NOD/SCID mice, which may accelerate the onset of diabetes and increase diabetes prevalence. METHODS: During gestation and postpartum, mice were analyzed under basal feed conditions, and following glucose injection (1 g/kg, i.p.) after overnight fast, using glucose tolerance test (GTT). Glycemia, corticosteronemia, blood and pancreatic insulin, glucagon levels, islet size, and islet morphology were evaluated. Glycemia and mortality were assessed after successive gestations in NOD mice mated for the first time at 2 different ages. RESULTS: 1. Basal glucagonemia rose markedly in first-gestation fed NOD mice. 2. β-cell hyperactivity was present earlier in first-gestation non-diabetic fasted NOD and NOD/SCID mice than in age-matched C57BL/6 mice, assessed by increased insulin/glucose ratio after GTT. 3. Overnight fasting increased corticosteronemia rapidly and sharply in pre-diabetic gestate NOD and NOD/SCID mice. 4. Islet size increased in non-diabetic gestate NOD mice compared with C57BL/6 mice. 5. Successive gestations accelerated diabetes onset, and contributed to increased mortality in NOD mice. CONCLUSIONS: First-gestation pre-diabetic NOD and non-diabetic NOD/SCID mice exhibited β-cell hyperactivity and deregulation of glucagon and/or corticosterone secretion. This amplified normally occurring insulin resistance, further exhausted maternal β-cells, and accelerated diabetes in NOD mice

    Increased Transcriptional Preproinsulin II β-Cell Activity in Neonatal Nonobese Diabetic Mice: In Situ Hybridization Analysis

    No full text
    In the prediabetic nonobese diabetic (NOD) mouse, a spontaneous model of type 1 diabetes, we previously reported transient postweaning hyperinsulinemia followed by progressive islet hyperplasia. A modified in situ hybridization technique was used to determine whether these effects were accompanied by changes in insulin transcriptional activity as a function of age. We found that NOD neonates express higher levels of preproinsulin II primary transcripts than age-matched C57BL/6 mice, but this difference disappeared within the first wk of age. To manipulate insulin transcriptional activity in NOD neonates, NOD mothers were treated with insulin during the last two wk of gestation. A down-regulation of β-cell hyperactivity was observed in female NOD neonates but not in male neonates. By contrast, the same insulin treatment applied to NODscid (severe combined immunodeficiency) mothers, devoid of functional lymphocytes but showing like NOD mice postweaning hyperinsulinemia, increased transcriptional β-cell activity in both sexes of neonates. In conclusion, NOD mice exhibit successive and transient signs of β-cell hyperactivity, reflected as early as birth by high transcriptional preproinsulin II activity and later, from weaning to around 10 wk of age, by hyperinsulinemia. Of note, when thinking in terms of in utero disease programming, the NOD neonatal transcriptional β-cell hyperactivity could be modulated by environmental (maternal and/or fetal) factors

    Hippocampal neurovascular and hypothalamic-pituitary-adrenal axis alterations in spontaneously type 2 diabetic GK rats

    No full text
    Metabolic and vascular consequences of diabetes mellitus induce several CNS complications. The dentate gyrus of the hippocampus, a well-recognized target for diabetic alterations, is a neurogenic area associated with memory and learning processes. Here, we explored the hippocampal neurogenesis and its microenvironment (astrocytes, vascularisation and glucocorticoid influence) in a spontaneous model of type 2 diabetes, the Goto-Kakizaki rat. The number of proliferative Ki67(+) cells and young doublecortin(+) neurons was 2-fold higher in the hippocampus from diabetic rats than in normoglycemic control Wistar at 4 months of age. However, there was no difference in cell survival, studied 3 weeks after bromodeoxyuridine administration. Labeling of endothelial cells against von Willebrand factor, demonstrated a 50% decrease in the granular cell layer fractional area covered by blood vessels and a diminished capillary branching in diabetic rats. Finally, Goto-Kakizaki rats exhibited decreased glucocorticoid receptor immunolabeling in CA1, associated with higher corticosteronemia. In conclusion, diabetic rats showed increased cell proliferation and neuronal differentiation without concomitant survival modification. A high proliferation rate, potentially reflecting a compensatory mechanism for neuronal suffering, also exists in various pathological situations. However, endothelial alteration induced by chronic hyperglycemia, hyperleptinemia and insulin resistance and associated with deleterious glucocorticoid effects might impair effective neurogenesis in diabetic Goto-Kakizaki rats.Fil: Beauquis, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; ArgentinaFil: Homo Delarche, Françoise. Universite Paris Diderot - Paris 7; FranciaFil: Giroix, Marie Heléne. Universite Paris Diderot - Paris 7; FranciaFil: Ehses, Jan. University Hospital of Zürich; SuizaFil: Coulaud, Josiane. Universite Paris Diderot - Paris 7; FranciaFil: Roig, Paulina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; ArgentinaFil: Portha, Bernard. Universite Paris Diderot - Paris 7; FranciaFil: de Nicola, Alejandro Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; ArgentinaFil: Saravia, Flavia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana; Argentin
    corecore