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Abstract

Regenerating (REG) proteins are associated with islet development, b-cell damage, diabetes and pancreatitis. Particularly,
REG-1 and REG-3-beta are involved in cell growth/survival and/or inflammation and the Reg1 promoter contains interleukin-
6 (IL-6)-responsive elements. We showed by transcriptome analysis that islets of Goto-Kakizaki (GK) rats, a model of
spontaneous type 2 diabetes, overexpress Reg1, 3a, 3b and 3c, vs Wistar islets. Goto-Kakizaki rat islets also exhibit increased
cytokine/chemokine expression/release, particularly IL-6. Here we analyzed Reg1 and Reg3b expression and REG-1 immuno-
localization in the GK rat pancreas in relationship with inflammation. Isolated pancreatic islets and acinar tissue from male
adult Wistar and diabetic GK rats were used for quantitative RT-PCR analysis. REG-1 immunohistochemistry was performed
on paraffin sections with a monoclonal anti-rat REG-1 antibody. Islet cytokine/chemokine release was measured after 48 h-
culture. Islet macrophage-positive area was quantified on cryostat sections using anti-CD68 and major histocompatibility
complex (MHC) class II antibodies. Pancreatic exocrine-to-endocrine Reg1 and Reg3b mRNA ratios were markedly increased
in Wistar vs GK rats. Conversely, both genes were upregulated in isolated GK rat islets. These findings were unexpected,
because Reg genes are expressed in the pancreatic acinar tissue. However, we observed REG-1 protein labeling in acinar
peri-ductal tissue close to islets and around large, often disorganized, GK rat islets, which may retain acinar cells due to their
irregular shape. These large islets also showed peri-islet macrophage infiltration and increased release of various cytokines/
chemokines, particularly IL-6. Thus, IL-6 might potentially trigger acinar REG-1 expression and secretion in the vicinity of
large diabetic GK rat islets. This increased acinar REG-1 expression might reflect an adaptive though unsuccessful response
to deleterious microenvironment.
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Introduction

The pathological roles of inflammatory-mediated mechanisms

in type 2 diabetes are emerging from clinical and experimental

studies [1]. Experiments in animal models can contribute to new

knowledge of the molecular partners involved. We previously

demonstrated pancreatic islet inflammation in the GK rat model

of spontaneously occurring type 2 diabetes, as well as in other

animal models of spontaneous and/or induced type 2 diabetes and

in patients [2–4]. Indices of islet inflammation in GK rats were

first demonstrated by a transcriptome (Affymetrix) analysis and

immunohistochemistry. Upregulated expression of numerous

inflammatory genes and increased numbers of macrophages were

observed in 4-month-old GK rats, i.e., after 3 months of chronic

mild hyperglycemia, vs age-matched Wistar controls [2–4]. Islets of

younger (2-month-old) diabetic GK rats also exhibited high CCL2

(CC-chemokine ligand-2 or MCP-1, monocyte chemoattractant

protein), CCL3 (CC-chemokine ligand-3 or MIP-1a, macrophage

inflammatory protein-1a), CXCL-1 (CXC-chemokine ligand-1 or

chemokine GRO1/KC, a murine interleukin-8 (IL-8) analog) and

IL-6 expression and release. Treating in vitro GK rat islets or in vivo

GK rats with the IL-1 receptor antagonist lowered islet mRNA

levels and release of these cytokines/chemokines, and ameliorated

in vivo glucose homeostasis parameters [4]. Therefore hyperglyce-

mia/hyperlipidemia-induced islet IL-1 activity promotes cytokine/

chemokine expression, leading to recruitment of innate inflam-

matory cells, which alter both functional b-cell mass and insulin

sensitivity [1–4]. However, concomitant increased expression of

endogenous IL-1 receptor antagonist and IL-1 mRNA levels in

GK rat islets suggests that GK rats are, to some extent, able to

mount anti-inflammatory defense mechanisms [4].
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We reported that 4-month-old GK rat islets over-express Reg1,

3a, 3b and 3c vs Wistar islets [2]. The Reg gene family consists of

five clustered genes mapped to a locus linked to altered insulin

secretion [5] and encoding proteins associated with pancreatitis,

diabetes, b-cell damage, b-cell replication and islet neogenesis [6–

10]. In isolated rat islets, Reg1 mRNA levels are increased by

glucose, amino acids, fetal serum or growth factors like insulin,

growth hormone and platelet-derived growth factor [6]. In the rat

acinar cell line AR4J2, Reg1 mRNA levels are significantly

increased by IL-6, interferon-c (IFN-c) or tumor necrosis factor-

a (TNF-a), but decreased by dexamethasone [6,11]. In the same

cell line, Reg3b gene expression is induced by TNF-a or IFN-c and
this effect is inhibited by dexamethasone [6]. Thus, several agents

involved in glucose homeostasis (glucose, insulin, glucocorticoids

and cytokines) are able to modulate Reg1 and Reg3b expression in

different pancreatic cell types. Most of the Reg gene family

products were first identified in the field of exocrine inflammatory

diseases, as genes encoding ‘pancreatitis associated proteins’ (PAP)

[6]. Most of the REG/PAP family proteins are secretory stress

proteins, which are able to exert anti-inflammatory effects

[6,12,13]. For example, antisense inhibition of all three PAP

isoforms correlated with pancreatitis worsening [14]. In vitro also,

PAP-1 inhibited rat macrophage activation by TNF-a [15].

Since REG-1 and REG-3-beta proteins are involved in cell

growth/survival control and also exert anti-inflammatory effects

[6,13], we analyzed their pancreatic expression in relationship

with inflammation in the GK rat. This model is characterized

from early life by reduced b-cell mass, not reflecting decreased b-
cell proliferation or increased b-cell death, but rather altered islet

neogenesis [16]. We demonstrate the coordinated regulation of

mediators of the inflammatory response and Reg gene expression at

the GK rat islet level.

Materials and Methods

Ethics Statement
The study was performed in strict accordance with accepted

standards of animal care established by the Centre National de la

Recherche Scientifique. All the animal experimentation presented

in the present manuscript has been performed at the animal

facility of the UFR de Biologie de l’Université PARIS 7/Denis

DIDEROT-Tour 33, 2, place Jussieu, 75251 Paris, France,

agreement number A75-05-05. All animal experiments were done

by investigators with agreement for animal experimentation (SC,

nu B75-1571; PS, nu 75–1526; FHD, nu75–1530). Ethics

committee approval was not necessary at the time of animal

experiment. Every effort was made to minimize suffering.

Animals
All animal experiments were conducted on diabetic adult male

GK rats and sex- and age-matched Wistar controls from the local

colony of Paris-Diderot (ex-Paris VII) University (Paris, France).

GK rats were bred together with Wistar control rats from which

the GK strain derived after backcrossing of animals selected at the

upper limit of normal distribution for glucose tolerance. Charac-

teristics of GK rats have been previously described [17]. Rats were

killed by decapitation and blood and pancreata collected for

measurement of metabolic parameters, islet isolation for quanti-

tative RT-PCR analysis and islet culture for measurement of

cytokine/chemokine release, or pancreas immunohistochemistry.

Immunohistochemistry
For REG immunochemical study, 4-month-old Wistar and GK

rats were used. Pancreata were rapidly perfused and fixed in 4%

paraformaldehyde in 0.1 M PBS for 24 h at 4uC and embedded in

paraffin. Paraffin sections of 7 mm were cut and mounted on

super-frost Plus slides (Menzel-Gläser, Braunschweig, Germany).

Before staining, antigen retrieval was performed by immersing

sections in preheated (95uC) citrate buffer 10 mM (pH6) in a water

bath for 20 min. Adjacent sections were incubated for 60 min with

primary antibodies: guinea-pig anti-porcine insulin (1:1000, ICN

pharmaceutical, Orsay, France), a cocktail of antibodies against

glucagon, somatostatin and pancreatic polypeptide (rabbit anti-

recombinant glucagon (1:1000), rabbit anti-human somatostatin

(1:1000) and rabbit anti-human pancreatic polypeptide (1:2000)

from Vector (Peterborough, UK), rabbit anti-human a-amylase

(1:2000, Sigma, St-Louis, MO, USA), or monoclonal mouse anti-

rat REG-1 (1:500, a gift from Pr. Hiroshi Okamoto, Tohoku

University, Sendai, Japan). Staining was visualized by incubation

with diaminobenzidine-tetra-hydrochloride Kit (Valbiotech, Les

Ulis, France). After staining, sections were mounted in Eukitt

(Labonord, Templemars, France). Negative controls were per-

formed with nonimmune serum instead of primary antibody.

For macrophage immunohistochemical study, 2-month-old

Wistar and GK rat pancreas cryosections were incubated with

mouse anti-rat CD68 or anti-Ia (MHC class II) antibodies (1:100

and 1:300, respectively, Serotec, Colmar, France) as previously

described [2]. Staining was visualized using appropriate peroxi-

dase-coupled secondary antibodies (Caltag, Cergy, France) and

subsequent incubation with 3-amino-9-ethylcarbazole (Sigma). For

each series of pancreas sections, one slide was stained only with the

second antibody as a control for endogenous peroxidase activity

and nonspecific antibody binding. Immunostained areas were

visualized and quantified using an Olympus BX40 microscope

[18].

Islet Isolation and mRNA Analysis
Islets were isolated by pancreas digestion with collagenase

(Boerhinger Mannheim, Mannheim, Germany), according to

standard procedure. Subsequently, islets were purified using a

continuous Histopaque (Sigma) gradient. Thereafter, all islets were

collected and hand-picked under a stereomicroscope. Islets and

acinar (islet-depleted) tissue was immediately frozen at 280uC.
Total islet and acinar tissue RNA was extracted according to

standard protocols using the RNeasy minikit from Qiagen

(RNeasy Kit 74104, Hombrechtikon, Switzerland). Islet RNA

yield was 26 mg/250 Wistar rat islets and 14 mg/140 GK rat islets.

RNA was amplified (two cycles) and biotin-labeled cRNA probes

were synthesized using Bioarray High Yield RNA transcript

labeling reagents from Enzo Diagnostics (Microsynth, Balgach,

Switzerland). Differential gene expression was confirmed by

quantitative RT-PCR (RT: SuperScript II Reverse Transcriptase

11752–050, Invitrogen Life Sciences, Basel, Switzerland and PCR:

qPCR Cyber Green kit: Eurogenetec RT-SN10-05, Seraing,

Belgium). Quantification was performed after normalization to

glyceraldehyde-3-phosphate dehydrogenase (Gapdh). Primer se-

quences were as follows:

- Reg1: forward, 59 TGC TCA TCA TGA CTC GCA ACA 39.

reverse, 59 CCA TCA GGC ATG AAA GCA GAA 39.

- Reg3b: forward, 59-TGT CAA CTG GGA GAG GAA CCC-

39.

reverse, 59-CCA CAG AAT CCG CGG TCT AA-39.

-Amya1: forward, 59 GAG CCC TTG TGT TTG TGG ACA

39.

reverse, 59 ATG CTC CTC CAG CAC CAT GT 39.

-Gapdh: forward, 59 TGC CAA GTA TGA TGA CAT CAA

GAA G 39.

reverse, 59 AGC CCA GGA TGC CCT TTA GT 39.

Pancreatic Reg Expression in Type 2 Diabetic Rat
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Islet culture and Cytokine and Chemokine Determination
Adult Wistar and GK rat islets were plated on extracellular

matrix-coated 3-cm dishes for 48 h (20 islets/2 ml of culture

medium consisting of RPMI medium 1640 containing 11 mM

glucose, 100 units/ml penicillin, 100 mg/ml streptomycin, 40 mg/
ml gentamycin, and 10% FCS), as previously described [4]. Then,

conditioned media were removed and assayed for IL-6, CCL2,

CCL3, CXCL1, using rat Luminex kits (Millipore). Released

cytokines/chemokines were normalized to total islet protein

content. Cytokines and chemokines were also measured in Wistar

and GK rat serum samples.

Statistics
Data are presented as means 6 SEM. Statistical analyses used

the Student’s t-test for unpaired data. Correlations were assessed

with non-parametric Spearman’s rank correlation test, using

Statview software. Significance was defined as p,0.05.

Results

Pancreatic Endocrine vs Exocrine Reg1 and Reg3b Gene
Expression
In a previous Affymetrix-based transcriptome study of 4-month-

old GK vs Wistar islets, we found 4 Reg genes to be overexpressed:

Reg1, Reg3a, Reg3b and Reg3c (by 12.4, 11.1, 45.5 and 9 fold

increase, respectively) [2], whereas Reg IV [6,19] was not detected

in GK rat islets due to the absence of the gene on the Affymetrix

RG-U34A microarray. We selected Reg1, Reg3b and Amya1

(control for exocrine contamination) for further analysis by

quantitative RT-PCR in pancreatic exocrine (acini and ducts)

and endocrine (islets) tissues. As shown in Fig. 1A, pancreatic

exocrine-to-endocrine ratios of Reg1 and Reg3b mRNA expression

were about10 times higher in control Wistar than in diabetic GK

rats. Conversely, GK vs Wistar rat islet Reg1 and Reg3b mRNA

ratios (Fig. 1B) were significantly increased, by 11.261.4 and

77.9616.3 fold, respectively (p,0.005). Because Reg1 and Reg3b
are exclusively expressed in acinar tissue [6], we checked whether

possible contamination of GK islets by acinar peri-islet tissue may

explain elevated Reg expression: GK rat islets exhibited a

statistically not significant 3.461.3-fold increase (n = 5) in Amya1

expression vs Wistar control islets (data not shown). Although not

reaching significance, these data indicate some variability in GK

islet purity among experiments, probably partially linked to the

peculiar shape of these islets, as developed below.

Pancreas Immunohistochemistry for REG-1 Proteins
In order to compare REG protein localization in 4-month-old

Wistar and GK pancreas, we used a monoclonal antibody against

rat REG-1. Labeling of islet b-cells (insulin) and non b-cells
(glucagon, somatostatin and pancreatic polypeptide), acinar tissue

(a-amylase) and REG-1 was performed on serial pancreatic

sections. As shown in Fig. 2A–B vs Fig. 2H–I and in Supporting

Information (Figure S1), endocrine hormone labeling highlights in

GK pancreas the disorganized b- and non b-cell pattern induced

by progressive islet fibrosis [2]. The evolution of GK vs Wistar

islets at 1, 2, 3 and 4 months of age is also illustrated, in particular

for: vascularization (anti-VWF, Figure S2) and/or fibrosis (anti-

fibronectin, Figure S3) labeling and innate immune cell infiltration

(anti-CD68 (Figure S4) and anti-D53 (Figure S5)). Comparison of

a-amylase and REG-1 labeling in Wistar pancreas showed few

slightly stained REG-1+ cells in the peri-islet exocrine tissue

(Fig. 2D vs Fig. 2C and Figure S1). By contrast, numerous large

and markedly stained REG-1+ acinar cells were observed around

GK islets (Fig. 2K vs Fig. 2J and Figure S1) and ducts close to these

islets (Fig. 2N). Notably, REG-1 labeling could be observed inside

the duct cavity. In addition, 2-month-old GK rats are character-

ized by greater islet size heterogeneity than those of Wistar rats

and exhibit very small and large islets (Figure S6). The latter

(Fig. 2N) appeared to exhibit more peri-islet REG-1+ labeling than

small ones (Fig. 2M).

Islet Release and Circulating Levels of Cytokines/
chemokines
Islets from 2-month-old diabetic GK rats expressed and released

more cytokines/chemokines, particularly IL-6, than those of

control Wistar islets [4]. Because rat Reg1 promoter contains

responsive elements for IL-6 [6], we compared islet cytokine/

chemokine release by small and large islets of 3-month-old rats

(Fig. 3A). When data were expressed as mean of absolute values of

cytokine/chemokine release, normalized to total islet protein

recovered in the corresponding experiment (Fig. 3B–E), large GK

islets appear to release more IL-6, CCL2, CCL3 and CXCL1 than

large Wistar islets, but the effect was significant for CCL3 (MIP-

1a) only. However, these absolute values may vary from one

experiment to another and we thus expressed the GK values

relative to control Wistar values in each experiment (Fig. 3F): in

this case, IL-6 release from large GK islets was also found to be

significantly increased (x 4.760.9 for 3 different islet isolations, p,

0.02). Concerning circulating cytokines/chemokines, we already

reported that while normoglycemic 1-week-old GK rats show

higher cytokine/chemokine levels than age-matched Wistar

controls [20], these levels dropped to similar low values at 2

months of age [4], as well as at 3 and 4 months of age (Table 1).

Figure 1. Regenerating gene-1 (Reg1) and Reg3b gene expres-
sion in the pancreas of 4-month-old Wistar (%) and GK (&)
rats. Values are means 6 SEM of three distinct experiments measured
by quantitative RT-PCR for: A) islet-depleted exocrine-to-endocrine
(isolated islets) tissue ratio; B) isolated islets: mRNA levels were
expressed as the fold change in GK vs corresponding Wistar group.
Glyceraldehyde-3-phosphate dehydrogenase was used as housekeep-
ing gene. Three different islet isolations for each group of rats, * p,0.05
and ** p,0.01 vs Wistar rats, as analyzed by Student’s t test for
unpaired data.
doi:10.1371/journal.pone.0090045.g001

Pancreatic Reg Expression in Type 2 Diabetic Rat
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Pancreas Immunohistochemistry for Islet Macrophages in
GK Rats
The REG-1 protein was particularly abundant in the peri-islet

area of large GK islets, which produced elevated levels of

cytokines. Inflammatory macrophages exhibit the same localiza-

tion from 2 months of age onwards [2], as illustrated for CD68

(Fig. 4A) and MHC class II (Fig. 4B) and for CD68 (Figure S4) and

CD53 (Figure S5). As particularly shown online, the peri-islet

immune infiltration was not systematically continuous and regular.

Thus, we looked for a possible relationship between islet size and

extent of inflammatory cell infiltration. There was a significant

correlation between both CD68+ and MHC II+ surface areas and

islet surface area in 2-month-old GK pancreas sections, r = 0.573,

p,0.025 and r = 0.950, p=0.003, respectively (Fig. 4C, D).

Discussion

Islets of diabetic GK rats are known to co-coordinately express 4

Reg genes at time of decreased b-cell replication, inflammation and

fibrosis [2]. Here, we show by quantitative RT-PCR that the

abundance of transcripts encoding REG-1 (also called pancreatic

stone protein-1 (PSP) or lithostathine) and REG-3b (also called

PAP, PAP-I, hepatocarcinoma-intestine-pancreas (HIP), REG-2

or peptide 23) appeared to be markedly and unexpectedly

upregulated in GK rat islets vs control islets. We also demonstrate

that acinar peri-islet REG-1 labeling characterizes large, often

disorganized GK rat islets, which exhibit concomitant peri-islet

macrophage infiltration and higher release of cytokine/chemokine

CCL3 (MIP-1a) and particularly IL-6, a typical REG/Reg gene

family inducer [6,21,22].

In agreement with the acinar localization of pancreatic Reg

mRNA [12,23], islet-depleted exocrine-to-endocrine tissue ratio

was elevated for both Reg1 and Reg3b genes in 4-month-old Wistar

controls. These ratios were markedly lower in age-matched

diabetic GK rats, probably because Reg1 and Reg3b were strongly

overexpressed in diabetic GK rat islets. At least two non-exclusive

reasons may account for Reg overexpression in diabetic GK rat

islets. First, as mentioned above, despite careful islet isolation some

Reg-containing acinar cells could be trapped and retained within

GK islets due to their irregular fibrotic shape [2]. Second,

overexpression of Reg1 and Reg3b in GK islets may arise from

isolation stress procedure, as previously described for other genes

[24], and/or deleterious type 2 diabetes-related islet microenvi-

ronment. Regarding the latter case, REG expression has been

measured by microarray analysis in b-cell enriched tissue from

type 2 diabetic vs non diabetic cadavers using laser capture micro-

dissection in order to avoid islet isolation artifacts [25]. This study

showed REG1a, REG1b, REG3a and REG3c upregulation without

b-cell regeneration but with inflammatory gene upregulation, as

observed in GK rat islets.

In the pancreas, Reg1 and Reg3 genes encode proteins that are

normally expressed at very low levels. The expression of these

proteins is strongly activated in acinar cells in response to many

injuries, such as acute and chronic pancreatitis, hypoxia, toxins

and diabetes among others [7,8,12,26,27]. In the Reg family

genes, there is clear isoforms specificity in term of their response

and biological effect [28]. It is well recognized that REG-1 protein

plays a beneficial role in b-cell proliferation, survival and islet

neogenesis [6]. In the surgical (90% depancreatized) rat model of

diabetes, REG-1 administration improved insulin secretion [9]. In

mice, overexpression or depletion of the Reg1 gene had beneficial

and deleterious effects on glucose homeostasis, respectively [6,29].

During pancreatitis, the highest PSP/REG-1 expression was

observed in acini surrounded by inflammatory cells [30]. A

comparable phenomenon exists around diabetic GK rat islets and

associated-ducts, which are in close contact with CD68+ and

MHC class II+ macrophages, neutrophils immature myeloid cells

and cells immunoreactive for reactive oxygen species and lipid

peroxidation [2,3,31]. A peri-islet REG-1 distribution has also

been observed: 1) in Wistar rats (as single cells or groups of cells)

Figure 2. Representative pancreas immunochemistry in 4-
month-old male Wistar (A–G) and GK (H–N) rats. Serial staining
(brown) for: (A, H) insulin (b-cell marker), (B, I) glucagon+somatostatin+
pancreatic polypeptide cocktail (non-b cell marker), (C, J) a-amylase
(acinar cell marker), and (D, K, and F–G, M–N) REG-1. For REG-1 labeling,
we used the monoclonal anti-rat REG-1 antibody from Hiroshi Okamoto
(Japan). REG-1 negative controls are shown in (E, L). In (F–G) and (M–N),
the border of islets is defined by the red dashed line. In Fig. 2N, ‘‘d’’
means ‘‘duct’’.
doi:10.1371/journal.pone.0090045.g002

Pancreatic Reg Expression in Type 2 Diabetic Rat
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[32], but it was very faint in our study; 2) in type 1 nonobese

diabetic (NOD) mice and NOD-rat insulin promoter-1-human

IFNb mice [33].

In GK rat pancreas, inflammatory cell levels increase from

weaning onwards (1 month of age), reach a plateau between 2 and

3 months and decline thereafter to finally disappear almost

completely around/in fibrotic islets [3]. Diabetic 2-month-old GK

Figure 3. In vitro cytokine/chemokine release by small and large islets from 3-month-old Wistar (%) and GK (&) rats. The islets were
selected as a function of their size by handpicking under a stereomicroscope. (A) Representative photomicrographs of islets cultured on ECM matrix
in the presence of 11 mM glucose. Figure S6 is indicative of the groups of small and large islets which were compared between Wistar and GK rats.
Note the disturbed shape and/or the ring of small cells (possibly, acinar and/or myeloid) around both types of isolated GK islets. (B, C, D, E): IL-6, CCL2,
CCL3 and CXCL1 islet release, respectively. Wistar and GK islets were pooled separately and plated in triplicate. In a given experiment, cytokine/
chemokine levels were normalized to total islet protein content after 48 h culture; in (B–E), data are presented as mean values 6 SEM, n = 3 different
islet isolations for each group of rats; in (F) data are presented for large islets, as mean values 6 SEM (n= 3) of the ratio of GK versus control Wistar
values in each experiment. *p,0.05 and **p,0.01 vs corresponding Wistar islets, as analyzed by Student’s t test for unpaired data. CCL2, CC-
chemokine ligand-2 or monocyte chemoattractant protein-1 (MCP-1); CCL3, CC-chemokine ligand-3 or macrophage inflammatory protein-1a (MIP-
1a); CXCL1, CXC-chemokine ligand-1 or chemokine GRO1/KC (murine IL-8 equivalent); IL-6, interleukin-6.
doi:10.1371/journal.pone.0090045.g003

Table 1. Circulating cytokines/chemokines in Wistar and GK rats as a function of age.

Age 3 months 4 months

Wistar GK Wistar GK

IL-6 724.86214.2 (n= 4) 481.86251.3 (n=4) 100.8673.3 (n= 5) 162.3690.7 (n= 4)

CCL2 168.3618.4 (n= 6) 155.0615.8 (n=6) 114.568.2 (n= 6) 139.3621.3 (n= 6)

CCL3 7.063.1 (n=6) 4.760.6 (n= 6) 3.960.6 (n=6) 2.560.5 (n=6)

CXCL1 330.5684.7 (n= 6) 300.3629.0 (n=6) 412.6673.1 (n= 6) 376.4674.7 (n= 6)

All data were determined under fed conditions. Values (pg/ml) are mean 6 SEM for the number (n) of animals. Statistical analysis used the Student t-test for unpaired
data. No significant difference in circulating cytokine levels was observed between 3- and 4-month-old Wistar and GK rats. CCL2, CC-chemokine ligand-2 or monocyte
chemoattractant protein-1 (MCP-1); CCL3, CC-chemokine ligand-3 or macrophage inflammatory protein-1a (MIP-1a); CXCL1, CXC-chemokine ligand-1 or chemokine
GRO1/KC (murine IL-8 equivalent); IL-6, Interleukin-6.
doi:10.1371/journal.pone.0090045.t001
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rat islets also exhibited elevated expression and/or release of

several cytokines/chemokines, which can be produced by all GK

islet cell types, in particular macrophages, endothelial cells and

endocrine islet cells [1,4,18]. Here, we showed that large GK islets

release more cytokines/chemokines than their Wistar counter-

parts, in particular CCL3 (MIP-1a) and IL-6. Reg1 gene promoters

contain IL-6-responsive elements [6,22]. Therefore, increased IL-

6 release by large GK rat islets might be responsible for the

marked acinar REG-1 expression in their vicinity. Because some

proteins of the REG/PAP family exert anti-inflammatory effects

[6,14,15], acinar peri-islet REG-1 expression in diabetic GK rats

might represent an expected defense reaction against islet

inflammation, as already observed concerning the upregulation

of: 1) IL-1 receptor antagonist mRNA [4]; and 2) antioxidant/

cAMP/anti-apoptosis pathway, which confers b-cell protection by

decreasing reactive oxygen species and apoptosis [31,34]. In

addition, hypoxia stress was recently shown to stimulate the

proliferation of several b-cell lines, with concomitant induction of

IL-6, Reg family genes and hepatocyte growth factor (HGF) gene

[22]. The use of siRNAs against rat Reg family genes attenuated

hypoxia-induced b-cell proliferation. The authors conclude that

hypoxia, by stimulating IL-6 expression, leads to overexpression of

Reg family genes (stimulating b-cell proliferation) and HGF gene

(inhibiting b-cell apoptosis), and consequently hypoxia increased

b-cell number. Finally, IL-6 might indirectly act on b-cell
adaption/renewal, via the stimulation of pancreatic a-cell
glucagon products [35].

Acinar peri-islet localization of REG3b protein has been

described in mice [23,28]. Beta-cell specific overexpression of

Reg3b driven by rat insulin promoter-1 protected mice from

hyperglycemia in the streptozotocin-induced model of type 1

diabetes [36]. In this study, 2 genes encoding ‘‘protective’’

molecules were upregulated: the acute responsive nuclear protein,

transcriptional regulator, 1 (NUPR-1/P8) and osteopontin (or

SPP-1, secreted phosphoprotein-1. A similar concomitant overex-

pression of genes encoding REG-3beta, NUPR-1 and osteopontin

was observed in type 2 diabetic GK rat islets [2]. Two other less

investigated genes of the Reg3 family (Reg3a and Reg3c), also

present in rat acinar tissue [6,28], were found to be upregulated in

our GK rat islet transcriptome study [2]. Next generation

sequencing of the GK and Wistar-Kyoto genomes identified non

synonymous polymorphisms in the genes encoding REG-3-alpha

(A103C, T35P in exon 3 and C275A, T92K in exon 4) and REG-

3-gamma (A478T, N160Y in exon 6), when compared to the rat

reference genome (Brown Norway) (Gauguier, unpublished). Since

DNA variants are conserved in both GK and Wistar-Kyoto rats, it

is unlikely that the amino acid changes account for altered

function of these proteins in GK islets. However, GK-specific

polymorphisms detected in promoter, intronic and intergenic

regions of the genes may explain their differential islet expression.

Of note, REG-3c/PAPIII is a macrophage chemoattractant

involved in nerve regeneration [37], like REG-1a protein, which

plays a role in neurite outgrowth [38]. Thus, Reg proteins might

be part of the relationship between innervation and islet

neogenesis [39], particularly at work during diabetes pathophys-

iology.

To conclude, REG/PAP proteins might exert at least two roles

during pancreas/islet injury of pancreatitis/diabetes: 1) downreg-

ulation of the inflammatory reaction; 2) b-cell functional rescue/
replacement. The latter phenomenon involves several mecha-

Figure 4. Immunohistochemistry for CD68 (A) and MHC class II (B) in 2-month-old GK rat pancreas sections. Analysis of serial pancreas
sections for 3 GK rats. Correlation coefficient (r = 0.573, p,0.025) between CD68+ area and total islet area (C). Correlation coefficient (r = 0.950,
p= 0.003) between MHC class II+ area and total islet area (D). Correlations were assessed with non-parametric Spearman’s rank correlation test. MHC,
major histocompatibity complex.
doi:10.1371/journal.pone.0090045.g004
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nisms, including b-cell proliferation, ductal islet neogenesis and

possibly transdifferentiation from acinar tissue [40]. Overexpres-

sion of REG/PAP proteins might result from increased IL-6, but

also TNFa, IFNc and IL-8 secretion [6,11,23]. In this context,

ductal cells like macrophages are known to produce 2 angiogenic

factors, which are crucial in b-cell development, IL-8 and vascular

endothelial growth factor (VEGF) [41–43]. GK rats present

deficient peripheral vascularization, linked to VEGF anomalies

[44,45] and altered islet vascularization and neogenesis from early

life [16,20]. All these anomalies, together with the polymorphisms

identified in Reg3a and/or Reg3c might contribute to maladaptive

GK rat b-cell rescue/replacement. Finally, several clinical data

may be related to the scenario, in particular: 1) the fact that PSP/

Reg1A has been suggested as a potential serum marker to detect

increased b-cell apoptosis, or its therapeutic response, thus might

assist the classification for maturity onset diabetes in the young

(MODY) [46]; 2) the presence of REG antibodies in both human

and/or rodent type 1 and 2 diabetes, which may represent a

maladapted attempt for islet neogenesis [47,48]. Therefore, a

better understanding of REG/PAP protein involvement in b-cell
physiology and inflammation might lead to new therapeutic tools

for type 2 diabetes.

Supporting Information

Figure S1 Immunohistochemistry for endocrine and exocrine

pancreatic cells in 4-month-old Wistar and Goto-Kakizaki (GK)

rat pancreas. Additional examples of immunohistochemical data

for the protein encoded by regenerating gene-1 (REG-1) and

endocrine and exocrine pancreatic cells in 4-month-old control

Wistar and diabetic GK male rat pancreas. Serial staining (brown)

for: insulin (b-cell marker), glucagon+somatostatin (SS)+pancreatic
polypeptide (PP) cocktail (non-b cell markers), REG-1 and a-
amylase (acinar cell marker). For REG-1 labeling, we used the

monoclonal anti-rat REG-1 antibody from Hiroshi Okamoto

(Japan). For antibody dilutions and REG-1 negative pancreas

section controls, see methods and Fig. 2 of the article, respectively.

Endocrine hormone labeling of GK pancreas highlights the

disorganized b- and non b-cell pattern induced by progressive islet

fibrosis, as illustrated in the following supplementary figures. While

few slightly REG-1+ cells are usually present in the peri-islet

exocrine tissue of Wistar pancreas, more numerous, large and

markedly stained REG-1+ acinar cells are observed around GK

islets after 3 months of hyperglycemia.

(TIF)

Figure S2 Evolution of pancreatic islet vascularization in Wistar

and GK rats as a function of age. Two factors known to be

produced by endothelial cells, von Willebrand factor (VWF, this

figure) and fibronectin (Figure S3), show the normal organization

of islet vascularization (brown staining) in 1, 2, 3 and 4-month-old

Wistar controls and its progressive disorganization in age-matched

diabetic GK rats. While VWF+ islet vascularization appears to be

similar at 1 month of age (around weaning and onset of

hyperglycemia), thereafter GK islet VWF+ vascularization be-

comes hypertrophied, as illustrated here at 2 and 3 months of age.

As previously published [1], VWF and fibronectin lesions progress

similarly before islet invasion by fibronectin and other extracellular

matrix proteins, as shown here at 4 months of age and in Figure

S3. Islet fibrosis leads to endocrine-cell disappearance. Rabbit

anti-human VWF (DakoCytomation), dilution (1:100) [1]. The

bordure of islets is defined by the yellow dashed line. Ducts are

indicated by black arrows.

(TIF)

Figure S3 Progression of pancreatic islet fibrosis in Wistar and

GK rats as a function of age. In Wistar rats, fibronectin labeling

(brown) offers the same pattern of islet vascularization from 1 to 3

months of age. In the GK rat pancreas, fibronectin labeling is first

limited to islet endothelial cells as for Wistar rats. Then, islets are

invaded by fibronectin and other extracellular matrix proteins with

progressive disappearance of endocrine cells. Rabbit anti-rat

fibronectin (Novotec), dilution (1:40) [1]. The bordure of islets is

defined by the yellow dashed line. Ducts are indicated by black

arrows.

(TIF)

Figure S4 Progression of CD68 inflammatory cell infiltration in

the pancreas of Wistar and GK rats as a function of age. CD68

labeling (brown) shows the presence of a few positive cells in

Wistar rat pancreas, particularly in the vicinity of islets and/or

ducts, and also dispersed in the exocrine tissue. In diabetic GK

rats, these CD68+ cells are more numerous, particularly at 2 and 3

months of age, and are mainly located in peri-islet and peri-ductal

areas, as previously published [1–4]. Mouse anti-rat CD68

(Serotec), dilution (1:100) [1]. The bordure of islets is defined by

the yellow dashed line. Ducts are indicated by black arrows.

(TIF)

Figure S5 Progression of islet CD53+ cell infiltration in Wistar

controls and GK rats as a function of age. The gene CD53 codes

for cluster of differentiation 53, a broadly expressed leukocyte

surface antigen [5]. CD53 is known to complex with integrins and

cellular components involved in cell-cell and cell-matrix interac-

tions and it plays a substantial role during inflammation [6]. In

Wistar control pancreas, some CD53+ cells (brown) may be

present in the peri-islet area or, sometimes, form a patch of cells at

the islet-ductal junction. In the GK rat pancreas, the CD53+

infiltration around islets and ducts may be particularly large,

discontinuous and irregular, as illustrated here at 2 and 3 months

of age. Mouse anti-rat CD53, dilution (1/30): (Serotec) [1]. The

bordure of islets is defined by the yellow dashed line. Ducts are

indicated by black arrows.

(TIF)

Figure S6 Presence of small and large islets in 2-month-old GK

rats, e.g. after 1 month of hyperglycemia, but not in age-matched

Wistar controls. Data are taken from an experiment aimed at

measuring the number of CD68+ macrophages per islet in both

groups of rats [2]. Pancreas sections were selected from 9 different

animals in each group and islet were classified as a function of

increasing surface. Because islet size increases with differentiation,

it may be suggested that the presence of small islets in diabetic GK

rats reflects an attempt for neogenesis. By contrast, large islets may

correspond to fibrotic islets, as shown in Figure S3 (fibronectin

labeling). Green rectangles are indicative of the groups of small

and large islets used for in vitro cyto/chemokine measurement in

Wistar and GK rats. Finally, 2 classes of medium islets appear to

exist in the GK pancreas. The first class (dotted arrow) shows a

lower mean islet surface than the second class but no difference

between Wistar and GK rats, by contrast to the second class (solid

arrow), where the mean islet surface value is larger in GK than in

Wistar rat pancreas sections. The second class probably reflects the

progression of GK rat islets to fibrosis.

(TIF)
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