15 research outputs found

    Reduced expression of mitochondrial complex I subunit Ndufs2 does not impact healthspan in mice

    Get PDF
    Aging in mammals leads to reduction in genes encoding the 45-subunit mitochondrial electron transport chain complex I. It has been hypothesized that normal aging and age-related diseases such as Parkinson’s disease are in part due to modest decrease in expression of mitochondrial complex I subunits. By contrast, diminishing expression of mitochondrial complex I genes in lower organisms increases lifespan. Furthermore, metformin, a putative complex I inhibitor, increases healthspan in mice and humans. In the present study, we investigated whether loss of one allele of Ndufs2, the catalytic subunit of mitochondrial complex I, impacts healthspan and lifespan in mice. Our results indicate that Ndufs2 hemizygous mice (Ndufs2+/−) show no overt impairment in aging-related motor function, learning, tissue histology, organismal metabolism, or sensitivity to metformin in a C57BL6/J background. Despite a signifcant reduction of Ndufs2 mRNA, the mice do not demonstrate a signifcant decrease in complex I function. However, there are detectable transcriptomic changes in individual cell types and tissues due to loss of one allele of Ndufs2. Our data indicate that a 50% decline in mRNA of the core mitochondrial complex I subunit Ndufs2 is neither benefcial nor detrimental to healthspan

    Polyamines Drive Myeloid Cell Survival by Buffering Intracellular pH to Promote Immunosuppression in Glioblastoma

    Get PDF
    Glioblastoma is characterized by the robust infiltration of immunosuppressive tumor-associated myeloid cells (TAMCs). It is not fully understood how TAMCs survive in the acidic tumor microenvironment to cause immunosuppression in glioblastoma. Metabolic and RNA-seq analysis of TAMCs revealed that the arginine-ornithine-polyamine axis is up-regulated in glioblastoma TAMCs but not in tumor-infiltrating CD8+ T cells. Active de novo synthesis of highly basic polyamines within TAMCs efficiently buffered low intracellular pH to support the survival of these immunosuppressive cells in the harsh acidic environment of solid tumors. Administration of difluoromethylornithine (DFMO), a clinically approved inhibitor of polyamine generation, enhanced animal survival in immunocompetent mice by causing a tumor-specific reduction of polyamines and decreased intracellular pH in TAMCs. DFMO combination with immunotherapy or radiotherapy further enhanced animal survival. These findings indicate that polyamines are used by glioblastoma TAMCs to maintain normal intracellular pH and cell survival and thus promote immunosuppression during tumor evolution

    Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation

    Get PDF
    The NLRP3 inflammasome is linked to sterile and pathogen-dependent inflammation, and its dysregulation underlies many chronic diseases. Mitochondria have been implicated as regulators of the NLRP3 inflammasome through several mechanisms including generation of mitochondrial reactive oxygen species (ROS). Here, we report that mitochondrial electron transport chain (ETC) complex I, II, III and V inhibitors all prevent NLRP3 inflammasome activation. Ectopic expression of Saccharomyces cerevisiae NADH dehydrogenase (NDI1) or Ciona intestinalis alternative oxidase, which can complement the functional loss of mitochondrial complex I or III, respectively, without generation of ROS, rescued NLRP3 inflammasome activation in the absence of endogenous mitochondrial complex I or complex III function. Metabolomics revealed phosphocreatine (PCr), which can sustain ATP levels, as a common metabolite that is diminished by mitochondrial ETC inhibitors. PCr depletion decreased ATP levels and NLRP3 inflammasome activation. Thus, the mitochondrial ETC sustains NLRP3 inflammasome activation through PCr-dependent generation of ATP, but via a ROS-independent mechanism.publishedVersionPeer reviewe

    An IFNγ/CXCL2 regulatory pathway determines lesion localization during EAE

    Full text link
    Abstract Background Myelin oligodendrocyte glycoprotein (MOG)-reactive T-helper (Th)1 cells induce conventional experimental autoimmune encephalomyelitis (cEAE), characterized by ascending paralysis and monocyte-predominant spinal cord infiltrates, in C57BL/6 wildtype (WT) hosts. The same T cells induce an atypical form of EAE (aEAE), characterized by ataxia and neutrophil-predominant brainstem infiltrates, in syngeneic IFNγ receptor (IFNγR)-deficient hosts. Production of ELR+ CXC chemokines within the CNS is required for the development of aEAE, but not cEAE. The cellular source(s) and localization of ELR+ CXC chemokines in the CNS and the IFNγ-dependent pathways that regulate their production remain to be elucidated. Methods The spatial distribution of inflammatory lesions and CNS expression of the ELR+ CXC chemokines, CXCL1 and CXCL2, were determined via immunohistochemistry and/or in situ hybridization. Levels of CXCL1 and CXCL2, and their cognate receptor CXCR2, were measured in/on leukocyte subsets by flow cytometric and quantitative PCR (qPCR) analysis. Bone marrow neutrophils and macrophages were cultured with inflammatory stimuli in vitro prior to measurement of CXCL2 and CXCR2 by qPCR or flow cytometry. Results CNS-infiltrating neutrophils and monocytes, and resident microglia, are a prominent source of CXCL2 in the brainstem of IFNγRKO adoptive transfer recipients during aEAE. In WT transfer recipients, IFNγ directly suppresses CXCL2 transcription in microglia and myeloid cells, and CXCR2 transcription in CNS-infiltrating neutrophils. Consequently, infiltration of the brainstem parenchyma from the adjacent meninges is blocked during cEAE. CXCL2 directly stimulates its own expression in cultured neutrophils, which is enhanced by IL-1 and suppressed by IFNγ. Conclusions We provide evidence for an IFNγ-regulated CXCR2/CXCL2 autocrine/paracrine feedback loop in innate immune cells that determines the location of CNS infiltrates during Th1-mediated EAE. When IFNγ signaling is impaired, myeloid cell production of CXCL2 increases, which promotes brainstem inflammation and results in clinical ataxia. IFNγ, produced within the CNS of WT recipients, suppresses myeloid cell CXCR2 and CXCL2 production, thereby skewing the location of neuroinflammatory infiltrates to the spinal cord and the clinical phenotype to an ascending paralysis. These data reveal a novel mechanism by which IFNγ and CXCL2 interact to direct regional recruitment of leukocytes in the CNS, resulting in distinct clinical presentations.https://deepblue.lib.umich.edu/bitstream/2027.42/145159/1/12974_2018_Article_1237.pd

    TLR9-induced interferon β is associated with protection from gammaherpesvirus-induced exacerbation of lung fibrosis

    Get PDF
    Abstract Background We have shown previously that murine gammaherpesvirus 68 (γHV68) infection exacerbates established pulmonary fibrosis. Because Toll-like receptor (TLR)-9 may be important in controlling the immune response to γHV68 infection, we examined how TLR-9 signaling effects exacerbation of fibrosis in response to viral infection, using models of bleomycin- and fluorescein isothiocyanate-induced pulmonary fibrosis in wild-type (Balb/c) and TLR-9-/- mice. Results We found that in the absence of TLR-9 signaling, there was a significant increase in collagen deposition following viral exacerbation of fibrosis. This was not associated with increased viral load in TLR-9-/- mice or with major alterations in T helper (Th)1 and Th2 cytokines. We examined alveolar epithelial-cell apoptosis in both strains, but this could not explain the altered fibrotic outcomes. As expected, TLR-9-/- mice had a defect in the production of interferon (IFN)-β after viral infection. Balb/c fibroblasts infected with γHV68 in vitro produced more IFN-β than did infected TLR-9-/- fibroblasts. Accordingly, in vitro infection of Balb/c fibroblasts resulted in reduced proliferation rates whereas infection of TLR-9-/- fibroblasts did not. Finally, therapeutic administration of CpG oligodeoxynucleotides ameliorated bleomycin-induced fibrosis in wild-type mice. Conclusions These results show a protective role for TLR-9 signaling in murine models of lung fibrosis, and highlight differences in the biology of TLR-9 between mice and humans.http://deepblue.lib.umich.edu/bitstream/2027.42/112877/1/13069_2011_Article_57.pd
    corecore