321 research outputs found

    Carrier dynamics in α‐Fe2O3 (0001) thin films and single crystals probed by femtosecond transient absorption and reflectivity

    Get PDF
    Femtosecond transient reflectivity and absorption are used to measure the carrier lifetimes in α‐Fe2O3 thin films and single crystals. The results from the thin films show that initially excited hot electrons relax to the band edge within 300 fs and then recombine with holes or trap within 5 ps. The trapped electrons have a lifetime of hundreds of picoseconds. Transient reflectivity measurements from hematite (α‐Fe2O3)single crystals show similar but slightly faster dynamics leading to the conclusion that the short carrier lifetimes in these materials are due primarily to trapping to Fe d-d states in the band gap. In the hematite single crystal, the transient reflectivity displays oscillations due to the formation of longitudinal acoustic phonons generated following absorption of the ultrashort excitation pulse

    Four new T dwarfs identified in PanSTARRS 1 commissioning data

    Full text link
    A complete well-defined sample of ultracool dwarfs is one of the key science programs of the Pan-STARRS 1 optical survey telescope (PS1). Here we combine PS1 commissioning data with 2MASS to conduct a proper motion search (0.1--2.0\arcsec/yr) for nearby T dwarfs, using optical+near-IR colors to select objects for spectroscopic followup. The addition of sensitive far-red optical imaging from PS1 enables discovery of nearby ultracool dwarfs that cannot be identified from 2MASS data alone. We have searched 3700 sq. deg. of PS1 y-band (0.95--1.03 um) data to y≈\approx19.5 mag (AB) and J≈\approx16.5 mag (Vega) and discovered four previously unknown bright T dwarfs. Three of the objects (with spectral types T1.5, T2 and T3.5) have photometric distances within 25 pc and were missed by previous 2MASS searches due to more restrictive color selection criteria. The fourth object (spectral type T4.5) is more distant than 25 pc and is only a single-band detection in 2MASS. We also examine the potential for completing the census of nearby ultracool objects with the PS1 3π\pi survey.Comment: 25 pages, 8 figures, 5 table, AJ accepted, updated to comply with Pan-STARRS1 naming conventio

    A scale-dependent model to represent changing aerodynamic roughness of ablating glacier ice based on repeat topographic surveys

    Get PDF
    Turbulent fluxes make a substantial and growing contribution to the energy balance of ice surfaces globally, but are poorly constrained owing to challenges in estimating the aerodynamic roughness length (z0). Here, we used structure from motion (SfM) photogrammetry and terrestrial laser scanning (TLS) surveys to make plot-scale 2-D and 3-D microtopographic estimations of z0 and upscale these to map z0 across an ablating mountain glacier. At plot scales, we found spatial variability in z0 estimates of over two orders of magnitude with unpredictable z0 trajectories, even when classified into ice surface types. TLS-derived surface roughness exhibited strong relationships with plot-scale SfM z0 estimates. At the glacier scale, a consistent increase in z0 of ∌0.1 mm d−1 was observed. Space-for-time substitution based on time since surface ice was exposed by snow melt confirmed this gradual increase in z0 over 60 d. These measurements permit us to propose a scale-dependent temporal z0 evolution model where unpredictable variability at the plot scale gives way to more predictable changes of z0 at the glacier scale. This model provides a critical step towards deriving spatially and temporally distributed representations of z0 that are currently lacking in the parameterisation of distributed glacier surface energy balance models

    Contemporary carbon fluxes do not reflect the long-term carbon balance for an Atlantic blanket bog

    Get PDF
    Peatlands are one of the largest terrestrial stores of carbon. Carbon exchange in peatlands is often assessed solely by measurement of contemporary fluxes; however, these fluxes frequently indicate a much stronger sink strength than that measured by the rate of C accumulation in the peat profile over longer timescales. Here we compare profile-based measurements of C accumulation with the published net ecosystem C balance for the largest peatland area in Britain, the Flow Country of northern Scotland. We estimate the long-term rate of C accumulation to be 15.4 g C m−2 yr−1 for a site where a recent eddy covariance study has suggested contemporary C uptake more than six times greater (99.37 g C m−2 yr−1). Our estimate is supported by two further long-term C accumulation records from nearby sites which give comparable results. We demonstrate that a strong contemporary C sink strength may not equate to a strong long-term sink and explore reasons for this disparity. We recommend that contemporary C sequestration should be viewed in the context of the long-term ecological drivers, such as fires, ecohydrological feedbacks and the changing quality of litter inputs

    HIP 38939B: A New Benchmark T Dwarf in the Galactic Plane Discovered with Pan-STARRS1

    Full text link
    We report the discovery of a wide brown dwarf companion to the mildly metal-poor ([Fe/H]=-0.24), low galactic latitude (b = 1.88 deg) K4V star HIP 38939. The companion was discovered by its common proper motion with the primary and its red optical (Pan-STARRS1) and blue infrared (2MASS) colors. It has a projected separation of 1630 AU and a near-infrared spectral type of T4.5. As such it is one of only three known companions to a main sequence star which have early/mid-T spectral types (the others being HN Peg B and eps Indi B). Using chromospheric activity we estimate an age for the primary of 900{+1900,-600} Myr. This value is also in agreement with the age derived from the star's weak ROSAT detection. Comparison with evolutionary models for this age range indicates that HIP 38939B falls in the mass range 38+/-20 Mjup with an effective temperature range of 1090+/-60 K. Fitting our spectrum with atmospheric models gives a best fitting temperature of 1100 K. We include our object in an analysis of the population of benchmark T dwarfs and find that while older atmospheric models appeared to over-predict the temperature of the coolest objects compared to evolutionary models, more recent atmospheric models provide better agreement.Comment: ApJ, in press. Tiny changes incorporated into final version: added analysis of likelihood of companionship, clarified the fitting proceedure, and updated the benchmark analysis to highlight when the quoted evolutionary models use the atmospheric model they are being compared to as a boundary conditio

    Accretion of Planetary Material onto Host Stars

    Full text link
    Accretion of planetary material onto host stars may occur throughout a star's life. Especially prone to accretion, extrasolar planets in short-period orbits, while relatively rare, constitute a significant fraction of the known population, and these planets are subject to dynamical and atmospheric influences that can drive significant mass loss. Theoretical models frame expectations regarding the rates and extent of this planetary accretion. For instance, tidal interactions between planets and stars may drive complete orbital decay during the main sequence. Many planets that survive their stars' main sequence lifetime will still be engulfed when the host stars become red giant stars. There is some observational evidence supporting these predictions, such as a dearth of close-in planets around fast stellar rotators, which is consistent with tidal spin-up and planet accretion. There remains no clear chemical evidence for pollution of the atmospheres of main sequence or red giant stars by planetary materials, but a wealth of evidence points to active accretion by white dwarfs. In this article, we review the current understanding of accretion of planetary material, from the pre- to the post-main sequence and beyond. The review begins with the astrophysical framework for that process and then considers accretion during various phases of a host star's life, during which the details of accretion vary, and the observational evidence for accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie
    • 

    corecore