75 research outputs found

    Compact HI clouds from the GALFA-HI survey

    Full text link
    The Galactic Arecibo L-band Feed Array HI (GALFA-HI) survey is mapping the entire Arecibo sky at 21-cm, over a velocity range of -700 to +700 km/s (LSR), at a velocity resolution of 0.18 km/s and a spatial resolution of 3.5 arcmin. The unprecedented resolution and sensitivity of the GALFA-HI survey have resulted in the detection of numerous isolated, very compact HI clouds at low Galactic velocities, which are distinctly separated from the HI disk emission. In the limited area of ~4600 deg2^2 surveyed so far, we have detected 96 of such compact clouds. The detected clouds are cold with a median Tk,max_{k,max} (the kinetic temperature in the case in which there is no non-thermal broadening) of 300 K. Moreover, these clouds are quite compact and faint, with median values of 5 arcmin in angular size, 0.75 K in peak brightness temperature, and 5×10185 \times 10^{18} cm2^{-2} in HI column density. Most of the clouds deviate from Galactic rotation at the 20-30 km/s level, and a significant fraction show evidence for a multiphase medium and velocity gradients. No counterparts for these clouds were found in other wavebands. From the modeling of spatial and velocity distributions of the whole compact cloud population, we find that the bulk of the compact clouds are related to the Galactic disk, and their distances are likely to be in the range of 0.1 to a few kpc. We discuss various possible scenarios for the formation and maintenance of this cloud population and its significance for Galactic ISM studies.Comment: Accepted for publication in the Astrophysical Journa

    Unified feature association networks through integration of transcriptomic and proteomic data

    Get PDF
    High-throughput multi-omics studies and corresponding network analyses of multi-omic data have rapidly expanded their impact over the last 10 years. As biological features of different types (e.g. transcripts, proteins, metabolites) interact within cellular systems, the greatest amount of knowledge can be gained from networks that incorporate multiple types of -omic data. However, biological and technical sources of variation diminish the ability to detect cross-type associations, yielding networks dominated by communities comprised of nodes of the same type. We describe here network building methods that can maximize edges between nodes of different data types leading to integrated networks, networks that have a large number of edges that link nodes of different–omic types (transcripts, proteins, lipids etc). We systematically rank several network inference methods and demonstrate that, in many cases, using a random forest method, GENIE3, produces the most integrated networks. This increase in integration does not come at the cost of accuracy as GENIE3 produces networks of approximately the same quality as the other network inference methods tested here. Using GENIE3, we also infer networks representing antibody-mediated Dengue virus cell invasion and receptor-mediated Dengue virus invasion. A number of functional pathways showed centrality differences between the two networks including genes responding to both GM-CSF and IL-4, which had a higher centrality value in an antibody-mediated vs. receptor-mediated Dengue network. Because a biological system involves the interplay of many different types of molecules, incorporating multiple data types into networks will improve their use as models of biological systems. The methods explored here are some of the first to specifically highlight and address the challenges associated with how such multi-omic networks can be assembled and how the greatest number of interactions can be inferred from different data types. The resulting networks can lead to the discovery of new host response patterns and interactions during viral infection, generate new hypotheses of pathogenic mechanisms and confirm mechanisms of disease

    The Rapid ASKAP Continuum Survey I: Design and First Results

    Full text link
    The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia, and will cover the full ASKAP band of 7001800700-1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey (NVSS) and Sydney University Molonglo Sky Survey (SUMSS) radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with 15\sim 15 arcsecond resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination +41+41^\circ made over a 288 MHz band centred at 887.5 MHz.Comment: 24 pages, 17 figures, 4 tables. For associated data see https://data.csiro.au/collections/domain/casdaObservation/results/PRAS110%20-%20The%20Rapid%20ASKAP%20Continuu

    Processing of spatial-frequency altered faces in schizophrenia: Effects of illness phase and duration

    Get PDF
    Low spatial frequency (SF) processing has been shown to be impaired in people with schizophrenia, but it is not clear how this varies with clinical state or illness chronicity. We compared schizophrenia patients (SCZ, n534), first episode psychosis patients (FEP, n522), and healthy controls (CON, n535) on a gender/facial discrimination task. Images were either unaltered (broadband spatial frequency, BSF), or had high or low SF information removed (LSF and HSF conditions, respectively). The task was performed at hospital admission and discharge for patients, and at corresponding time points for controls. Groups were matched on visual acuity. At admission, compared to their BSF performance, each group was significantly worse with low SF stimuli, and most impaired with high SF stimuli. The level of impairment at each SF did not depend on group. At discharge, the SCZ group performed more poorly in the LSF condition than the other groups, and showed the greatest degree of performance decline collapsed over HSF and LSF conditions, although the latter finding was not significant when controlling for visual acuity. Performance did not change significantly over time for any group. HSF processing was strongly related to visual acuity at both time points for all groups. We conclude the following: 1) SF processing abilities in schizophrenia are relatively stable across clinical state; 2) face processing abnormalities in SCZ are not secondary to problems processing specific SFs, but are due to other known difficulties constructing visual representations from degraded information; and 3) the relationship between HSF processing and visual acuity, along with known SCZ- and medication-related acuity reductions, and the elimination of a SCZ-related impairment after controlling for visual acuity in this study, all raise the possibility that some prior findings of impaired perception in SCZ may be secondary to acuity reductions

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    A split horseradish peroxidase for detection of intercellular protein-protein interactions and sensitive visualization of synapses

    Get PDF
    Intercellular protein-protein interactions (PPIs) enable communication between cells in diverse biological processes, including cell proliferation, immune responses, infection and synaptic transmission, but they are challenging to visualize because existing techniques1,2,3 have insufficient sensitivity and/or specificity. Here we report split horseradish peroxidase (sHRP) as a sensitive and specific tool for detection of intercellular PPIs. The two sHRP fragments, engineered through screening of 17 cut sites in HRP followed by directed evolution, reconstitute into an active form when driven together by an intercellular PPI, producing bright fluorescence or contrast for electron microscopy. Fusing the sHRP fragments to the proteins neurexin (NRX) and neuroligin (NLG), which bind each other across the synaptic cleft4, enabled sensitive visualization of synapses between specific sets of neurons, including two classes of synapses in the mouse visual system. sHRP should be widely applicable for studying mechanisms of communication between a variety of cell types

    Exponential growth, high prevalence of SARS-CoV-2, and vaccine effectiveness associated with the Delta variant

    Get PDF
    SARS-CoV-2 infections were rising during early summer 2021 in many countries associated with the Delta variant. We assessed RT-PCR swab-positivity in the REal-time Assessment of Community Transmission-1 (REACT-1) study in England. We observed sustained exponential growth with average doubling time (June-July 2021) of 25 days driven by complete replacement of Alpha variant by Delta, and by high prevalence at younger less-vaccinated ages. Unvaccinated people were three times more likely than double-vaccinated people to test positive. However, after adjusting for age and other variables, vaccine effectiveness for double-vaccinated people was estimated at between ~50% and ~60% during this period in England. Increased social mixing in the presence of Delta had the potential to generate sustained growth in infections, even at high levels of vaccination

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study

    Get PDF
    Background The SARS-CoV-2 variant B.1.1.7 was first identified in December, 2020, in England. We aimed to investigate whether increases in the proportion of infections with this variant are associated with differences in symptoms or disease course, reinfection rates, or transmissibility. Methods We did an ecological study to examine the association between the regional proportion of infections with the SARS-CoV-2 B.1.1.7 variant and reported symptoms, disease course, rates of reinfection, and transmissibility. Data on types and duration of symptoms were obtained from longitudinal reports from users of the COVID Symptom Study app who reported a positive test for COVID-19 between Sept 28 and Dec 27, 2020 (during which the prevalence of B.1.1.7 increased most notably in parts of the UK). From this dataset, we also estimated the frequency of possible reinfection, defined as the presence of two reported positive tests separated by more than 90 days with a period of reporting no symptoms for more than 7 days before the second positive test. The proportion of SARS-CoV-2 infections with the B.1.1.7 variant across the UK was estimated with use of genomic data from the COVID-19 Genomics UK Consortium and data from Public Health England on spike-gene target failure (a non-specific indicator of the B.1.1.7 variant) in community cases in England. We used linear regression to examine the association between reported symptoms and proportion of B.1.1.7. We assessed the Spearman correlation between the proportion of B.1.1.7 cases and number of reinfections over time, and between the number of positive tests and reinfections. We estimated incidence for B.1.1.7 and previous variants, and compared the effective reproduction number, Rt, for the two incidence estimates. Findings From Sept 28 to Dec 27, 2020, positive COVID-19 tests were reported by 36 920 COVID Symptom Study app users whose region was known and who reported as healthy on app sign-up. We found no changes in reported symptoms or disease duration associated with B.1.1.7. For the same period, possible reinfections were identified in 249 (0·7% [95% CI 0·6–0·8]) of 36 509 app users who reported a positive swab test before Oct 1, 2020, but there was no evidence that the frequency of reinfections was higher for the B.1.1.7 variant than for pre-existing variants. Reinfection occurrences were more positively correlated with the overall regional rise in cases (Spearman correlation 0·56–0·69 for South East, London, and East of England) than with the regional increase in the proportion of infections with the B.1.1.7 variant (Spearman correlation 0·38–0·56 in the same regions), suggesting B.1.1.7 does not substantially alter the risk of reinfection. We found a multiplicative increase in the Rt of B.1.1.7 by a factor of 1·35 (95% CI 1·02–1·69) relative to pre-existing variants. However, Rt fell below 1 during regional and national lockdowns, even in regions with high proportions of infections with the B.1.1.7 variant. Interpretation The lack of change in symptoms identified in this study indicates that existing testing and surveillance infrastructure do not need to change specifically for the B.1.1.7 variant. In addition, given that there was no apparent increase in the reinfection rate, vaccines are likely to remain effective against the B.1.1.7 variant. Funding Zoe Global, Department of Health (UK), Wellcome Trust, Engineering and Physical Sciences Research Council (UK), National Institute for Health Research (UK), Medical Research Council (UK), Alzheimer's Society
    corecore