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Abstract

High-throughput multi-omics studies and corresponding network analyses of multi-omic 
data have rapidly expanded their impact over the last 10 years. As biological features of dif-

ferent types (e.g. transcripts, proteins, metabolites) interact within cellular systems, the 
greatest amount of knowledge can be gained from networks that incorporate multiple types 
of -omic data. However, biological and technical sources of variation diminish the ability to 
detect cross-type associations, yielding networks dominated by communities comprised of 
nodes of the same type. We describe here network building methods that can maximize 
edges between nodes of different data types leading to integrated networks, networks that 
have a large number of edges that link nodes of different–omic types (transcripts, proteins, 
lipids etc). We systematically rank several network inference methods and demonstrate 
that, in many cases, using a random forest method, GENIE3, produces the most integrated 
networks. This increase in integration does not come at the cost of accuracy as GENIE3 pro-

duces networks of approximately the same quality as the other network inference methods 
tested here. Using GENIE3, we also infer networks representing antibody-mediated Dengue 
virus cell invasion and receptor-mediated Dengue virus invasion. A number of functional 
pathways showed centrality differences between the two networks including genes respond-

ing to both GM-CSF and IL-4, which had a higher centrality value in an antibody-mediated 
vs. receptor-mediated Dengue network. Because a biological system involves the interplay 
of many different types of molecules, incorporating multiple data types into networks will 
improve their use as models of biological systems. The methods explored here are some of 
the first to specifically highlight and address the challenges associated with how such multi-

omic networks can be assembled and how the greatest number of interactions can be 
inferred from different data types. The resulting networks can lead to the discovery of new 
host response patterns and interactions during viral infection, generate new hypotheses of 
pathogenic mechanisms and confirm mechanisms of disease.

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: McClure RS, Wendler JP, Adkins JN,

Swanstrom J, Baric R, Kaiser BLD, et al. (2019)

Unified feature association networks through

integration of transcriptomic and proteomic data.

PLoS Comput Biol 15(9): e1007241. https://doi.

org/10.1371/journal.pcbi.1007241

Editor: Paul Jensen, University of Illinois at

Urbana-Champaign, UNITED STATES

Received: August 20, 2018

Accepted: July 2, 2019

Published: September 17, 2019

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All viral

transcriptomic data used in this study has been

uploaded to the Gene Expression Omnibus (GEO)

with accession number GSE135079. Accession

numbers for additional transcriptomic data sets are

called out in the text. All proteomic data used in

this study is available via ProteomeXchange with

identifier PXD014780 (https://www.ebi.ac.uk/pride/

archive/projects/PXD014780).

Funding: JNA, Intelligence Advanced Research

Projects Activity (iARPA), https://www.iarpa.gov/.

http://orcid.org/0000-0003-4195-8138
http://orcid.org/0000-0002-8125-1391
http://orcid.org/0000-0003-4696-5396
http://orcid.org/0000-0003-2961-2572
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007241&domain=pdf&date_stamp=2019-09-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007241&domain=pdf&date_stamp=2019-09-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007241&domain=pdf&date_stamp=2019-09-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007241&domain=pdf&date_stamp=2019-09-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007241&domain=pdf&date_stamp=2019-09-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007241&domain=pdf&date_stamp=2019-09-17
https://doi.org/10.1371/journal.pcbi.1007241
https://doi.org/10.1371/journal.pcbi.1007241
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://www.ebi.ac.uk/pride/archive/projects/PXD014780
https://www.ebi.ac.uk/pride/archive/projects/PXD014780
https://www.iarpa.gov/


Author summary

Inferring co-expression networks that combine multiple types of–omics data can lead to

networks that are highly segregated with very few edges linking nodes of different–omics

types. Here, we explored methods of improving integration in co-expression networks

and found that a random forest approach, GENIE3, was, in many cases, the best method

for inferring such networks. GENIE3 was approximately as accurate as other network

inference methods so this improvement in integration did not come at the cost of network

quality. We also used GENIE3 to infer several networks using data derived from infection

of human cells with Dengue virus and interrogated them to better understand processes

that may have higher importance when Dengue virus carries out antibody-mediated

infection compared to receptor-mediated infection. Processes involved in GM-CSF and

IL-4 were more central during antibody-mediated infection. Overall, these studies identify

network inference methods that are particularly well suited to multi-omic networks and

also demonstrate how these approaches can be used to better understand Dengue virus

infection.

Introduction

Over the last several decades, a number of multi-omic experimental methods have emerged to

study host-pathogen interactions [1] and other complex biological systems. These studies

focus on collecting a particular type of molecule from a biological system and using high

throughput methods to query abundance levels across changing conditions. These empirical

methods include transcriptomics [2–5], proteomics [6–8], metabolomics [9, 10], and lipido-

mics [11–13]. Host-pathogen interactions, including immunological responses and virulence

factors, represent a particularly complex biological site where multiple different types of bio-

molecules are known to play important roles. Therefore, some of the most critical insights and

translational conclusions can be gained from combining different types of -omics-based stud-

ies. Kocharunchitt et. al. examined the response of Escherichia coli O157:H7 to varying water

temperatures, emulating host interactions, by collecting proteomic and transcriptomic data

and using both to query responses of a single parent gene [14]. Dapat and Oshitani linked host

and viral proteins of respiratory syncytial virus based on creating networks of protein-protein

interactions from pre-existing databases and then overlaying abundance data from transcrip-

tomic and proteomic studies onto these networks to identify hubs that may alter their expres-

sion [15].

Other studies have used transcriptomics, proteomics, and lipidomics in integrated net-

works to elucidate interactions between Hepatitis C virus and the host [16, 17] or to better

understand bacterial virulence programs [18, 19]. Several multi-omic studies have reported on

the fact that, globally, there seems to be poor correlation between different data types (tran-

scriptomic or proteomic for example) that are derived from the same gene [20–22]. Although

expression heterogeneity (batch effects) can be an important driver of poor cross-class correla-

tion, this lack of correlation is also likely due to the regulatory processes that determine abun-

dance of each transcript and protein (e.g. transcription, translation, degradation, etc.). Lack of

correlation may also be linked to the inherent differences in querying protein levels (2D gel

electrophoresis and mass spectrometry) compared to transcript levels (microarray or RNA-

seq) or in other aspects of experimental design [23].
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Because–omics data tends to be large and complex a network approach that links features

in omics datasets can be very useful in gaining a high level view of the system and identifying

which features occupy positions of high centrality or which processes are co-regulated in a

non-intuitive way. A number of methods exist for inferring networks based on correlation

coefficient, mutual information, Bayesian probability, random forest analysis and regression

analysis. Networks of related features have been made for transcriptomic analyses of pathogens

[24, 25], for proteome analyses [17, 26] and for metabolomic or lipidomic analyses [27]. Such

networks have been used to identify specific processes or pathways that may be responding in

tandem across a range of conditions, providing insight into coordination and cross-talk in bio-

logical systems as they respond to infection. They can also be used to identify genes of high

importance to the organism under analysis [24, 28, 29], predict gene function [30–32] or iden-

tify regulatory strategies of biological systems [33–35]. Networks focusing on pathogens have

identified which genes may be specifically important to virulence [24, 36] and other networks

have been focused on expanding this approach further by querying not only the host or patho-

gen but specifically interactions between these organisms [37–39].

As networks seek to model complex biological systems with a number of different molecu-

lar features (e.g. transcripts, proteins, metabolites), the most accurate networks will be those

that can incorporate multiple types of–omics data reporting on these molecules. The lack of

apparent correlation between different–omics types (protein and transcript) described above

has also emerged when networks of multiple data types are constructed. Despite this hurdle,

approaches that effectively integrate data across different technological platforms and biomo-

lecular classes are likely to become more important as multi-omics data becomes easier to gen-

erate. Platforms such as mass-spectrometry and RNA-seq also result in missing values when

molecules fall below an abundance threshold, and attempts have been made to develop meth-

odologies to incorporate these data types when building networks using mutual information

scores [40, 41]. With the goal of creating improved integrated networks, we examine here a

number of network inference tools using several types of–omics data (mainly transcriptomic

and proteomic) and identify those inference tools that create the most integrated networks,

defined as those having the maximum number of edges connecting different types of–omics

data, termed cross-type edges. Previous studies have focused on ranking network inference

methods based on accuracy and have found that GENIE3, a random forest method, created

the best network in terms of its ability to link known regulator-target pairs in Escherichia coli
[42]. However, there has been no corresponding analysis that systematically ranks network

inference methods by their ability to create integrated networks of transcripts and proteins.

We perform this ranking here and find that, in most cases, GENIE3 is also the best inference

method to create integrated networks of proteomic and transcriptomic data. We show that

these networks, including the cross-type edges in the network, are accurate, and we use this

approach to interrogate and compare networks inferred from data derived from antibody-

mediated entry of Dengue virus into cells and from receptor-mediated entry. The methods

presented here provide important guidance for constructing multi-omic networks represent-

ing host responses to infection, and offer strategies for inferring networks that can act as highly

accurate and robust models of cellular systems.

Results

Networks of transcripts and proteins are highly segregated

Transcriptomic and proteomic samples were collected from cells at 2, 8, 16, and 24 hours post-

infection. We initially carried out functional enrichment of transcripts and proteins that

showed statistically significant changes in expression as a function of infection. This showed



that transcripts showing changes in expression in response to infection were enriched for pro-

cesses such as cytokine signaling, TLR signaling, phagosomes, viral carcinogenesis and

response to infection (S1 and S2 Tables). Proteins showing changes in expression as a function

of infection were enriched for some of the same pathways as well as regulation of the cytoskele-

ton and antigen presentation (S3 Table). We also examined replicate and treatment variation

between samples as part of a quality analysis of the Dengue dataset. Using an Adonis test we

found that Treatments (virus infection, cell type, etc.) accounted for 23.6% of the differences

between samples when proteins were examined and 40.7% of the differences when transcripts

were examined with both of these results being statistically significant (p-value > 0.001 for

both tests). In contrast, replicates accounted for < 3% of differences among samples when

either proteins or transcripts were examined with neither of these results being significant (p-

value of 0.858 and 0.981 respectively). Networks were then inferred for this dataset where tran-

scripts and proteins were kept as separate nodes in the network. The same gene detected at the

transcript or protein level is represented by two separate nodes in the network (though often a

gene is only detected at either transcript or protein level, not both). This was done for two rea-

sons: (1) a gene may show different expression levels as a transcript or as a protein due to post-

transcriptional regulation. Combining transcript and protein levels may therefore give an inac-

curate overall view of the gene’s expression level. (2) Within the cell transcripts and proteins

exist simultaneously and may interact with each other and affect each other’s expression. To

identify these putative interactions it will be necessary to also keep transcript and proteins as

separate entities in a network. Initial networks using both proteins and transcripts as separate

features in the network and Pearson correlation coefficient (PCC) as an association method

resulted in an extremely low number of edges linking transcripts and proteins compared to

those linking transcripts only or proteins only (S1 Fig, S4 Table). Using a PCC threshold of

~0.85 produced a network containing 100000 total edges and 5016 total nodes. Within this

network, 97,396 edges (97.3%) connected two transcripts, 2592 (2.59%) connected two pro-

teins and only 12 (0.012%) connected a protein and transcript (cross-type edges). This low

number of cross-type edges persisted as additional Pearson thresholds examined, ranging

from ~0.81 to ~0.96 and producing networks of 200000, 50000, 25000, 12500, 5000 and 2500

edges (Fig 1A and 1B). We next examined whether the differing scales and distributions of

proteomic vs. transcriptomic data could be the cause of the lack of cross-type edges. Because of

differences in the nature of microarrays compared to mass spectrometry and the downstream

data analysis expression values for transcripts are generally far lower than expression values

for proteins (S2A Fig). To artificially correct for this discrepancy, we multiplied all transcrip-

tomic gene expression values by a factor of 2.6. This led to modified transcriptomic values that

had a distribution and scale that was highly similar that seen with proteomic expression values

(S2B Fig). However, when using these modified transcriptomic values, we found that there

was no change in the number of cross-type edges inferred (S4 Table). This demonstrates that

the differing scales and distributions of transcriptomic vs. proteomic data seen here are not the

cause of the lack of cross-type edges and that other factors are at play.

There are biological functions that may cause proteins and transcripts to cluster together

[22], but it is also likely that the inference method of choice contributes to the segregation of

the network. To explore this further we investigated other methods that may be able to create

more integrated networks. Aside from PCC, other methods that can be used to link features

include Spearman correlation coefficient, and those developed to infer transcriptional regula-

tory interactions from transcriptomic data, but are applicable to inference of associations

between different data types, such as mutual information [33, 43] and random forest methods.

We examined nine other network inference algorithms in addition to PCC to assess their abil-

ity to infer cross-type edges. These 10 inference methods are described in the Methods and



include correlation coefficient (Pearson and Spearman), mutual information (CLR, methods

from the MINET package) and random forest (GENIE3) approaches. We specifically were

interested in GENIE3 as it ranked as the top performer in the DREAM5 challenge and had

been used in the past to infer networks of proteins and transcripts [23]. For each method we

inferred seven different networks ranging in size from 200000 to 2500 edges to evaluate the

performance of methods. Networks with the same letter designation (Networks A through G)

are matched by size across inference methods. Network designations, the edge cutoffs used,

the sizes of networks and the number of cross-type edges are shown in S4 Table and .sif files

for each network are included as a Supplementary Dataset. While a number of the mutual

information based methods improved upon PCC in drawing cross-type edges, GENIE3, the

random forest method, was by far the best method for creating integrated networks (Fig 2A).

It was 6.9-fold better than the next best method (MINET, from the MINET package in R)

when examining the largest networks. When examining small networks of 5000 edges it pro-

duced 252 cross-type edges, compared to only two for CLR, one for PCC and zero for all other

methods (S3 Fig, S4 Table). Similar to PCC, increasing the threshold used to define an edge to

make it more stringent led to an increase in the ratio of cross-type edges to total edges. We

also found that increasing the edge threshold led to an increase in the ratio of cross-type edges

drawn by GENIE3 compared to those drawn by MINET (Fig 2B), at smaller network sizes

GENIE3 has an even larger advantage over other network inference methods.

Jaccard similarity of network inference methods

As there were large differences in the ability of each method to infer cross-type edges, we next

compared how much edge overlap there was between methods. Using networks of 5000 edges

Fig 1. Ratio of edges types by Pearson correlation coefficient to all existing edges of that type. (A) The network

letter is indicated on x-axis and the ratio of the number of edges of a particular type (either Transcript-Transcript,

Protein-Protein, or Transcript-Protein) to the total number of edges of all types is shown on the y-axis. Network A is

the largest and network G the smallest. Protein-Protein ratios are represented by blue diamonds, Transcript-Transcript

ratios are represented by red squares and Cross-type edges (Transcript-Protein) are represented by green triangles. (B)

Cross-type edge ratios are enlarged for ease of viewing. Network G inferred with Pearson had no cross-type edges so

the resulting ratio is zero.

https://doi.org/10.1371/journal.pcbi.1007241.g001

https://doi.org/10.1371/journal.pcbi.1007241.g001


from each method we determined the overlap of identical edges between networks. Networks

were compared using the Jaccard similarity of edges (the ratio of intersection of edges/union

of edges). Fig 3 shows the similarity of all network pairs of the 10 inference methods we tested,

with green representing higher Jaccard similarity and red lower similarity. The composition of

the GENIE3 network was closest to networks made using CLR from the MINET package and

the original CLR algorithm using resampling (Methods). The Jaccard similarity of edges

Fig 2. Comparison of network inference method’s ability to generate cross-type edges. (A) Networks were made

with several different methods and edge cutoffs were chosen so that all networks of a particular letter are the same size

across inference methods. The number of Cross-type edges for each network is shown on the y-axis and the methods

on the x-axis. CLR_O_RS indicates the original CLR algorithm with resampling to distinguish it from the version of

CLR used in the MINET package. The ARACNE method removes edges of low association as part of its methodology

and thus only smaller networks containing high scoring edges are retained with ARACNE. (B) The fold increase in

Cross-type edges inferred by the GENIE3 method compared to the MINET method (the next best method at creating

Cross-type edges) is shown. For networks F and G MINET did not draw any Cross-type edges and so these ratios are

not displayed.

https://doi.org/10.1371/journal.pcbi.1007241.g002

Fig 3. Comparisons of edge identity in networks. Overlap of identical edges is shown for all network inference

methods by calculating the Jaccard similarity of edges (the ratio of intersection of edges/union of edges) when

comparing two networks. Green indicates higher similarity and red lower similarity. Inference methods were clustered

and the resulting dendogram is shown on the left. CLR_O_RS indicates the original CLR algorithm with resampling to

distinguish it from the version of CLR used in the MINET package.

https://doi.org/10.1371/journal.pcbi.1007241.g003

https://doi.org/10.1371/journal.pcbi.1007241.g002
https://doi.org/10.1371/journal.pcbi.1007241.g003


comparing GENIE3 to these methods was 0.174 and 0.184 respectively. When examining the

pattern of overlap between other algorithm pairs, two additional clusters emerge. The

MRNET, MINET, and ARACNE methods from the MINET package cluster together showing

Jaccard similarity of approximately 0.42. Clustering with PCC is the Spearman correlation

coefficient and two other methods from the MINET package, MIM and MRNETB, the average

Jaccard similarity between these methods being 0.612. There are several clusters of methods

that produce similar networks, but GENIE3 produces networks that have more unique edges

distinct from networks produced by the other methods. Therefore, GENIE3 is able to detect

cross-platform relationships that are not detected by other methods.

Quality of network edges

Because there is some variation in overlap of edges between methods (ratios range from 0.104

to 0.99), we next wanted to examine how accurate networks were to address the question, “are

different network inference methods producing edges of different quality?” Quality of net-

works can be difficult to assess as they generally provide far more information than has been

experimentally verified. Previous studies have graded networks based on their ability to link

known regulator-target pairs in E. coli and in this study GENIE3 emerged as the most accurate

[42]. However, networks provide additional information beyond regulator-target pairs and we

chose a wider metric based on linking genes in the same functional group. Here, we focus on

the number of edges that connect two features that are in the same functional group as deter-

mined using KEGG pathways [44, 45]. Because there is such a large difference in the ability of

each inference method to infer cross-type edges, we used only transcript-transcript edges for

this analysis. This approach revealed that there was moderate variability between network

inference methods (Fig 4). MRNETB had the highest quality network according to this metric

with a functional edge ratio of 46.1%. MINET showed the lowest functional edge ratio at

21.2% while GENIE3 was near the middle with a functional edge ratio of 31.1%. As a baseline

we also examined the quality of networks where the identity of all nodes had been randomized.

All of the networks improved upon the randomization, which had a functional edge ratio clus-

tered around 7.6 ± 0.012%. Importantly, the method we identified as producing the greatest

number of cross-type edges, GENIE3, produced edges of approximately the same quality as

the other methods. This indicates that the significant improvement of GENIE3 in inferring

cross-type edges does not come at the expense of network quality. This is consistent with prior

studies using GENIE3 on bacterial systems, which have also found it to be highly accurate

[42].

Having shown that the large increase in cross-type edges produced by GENIE3 does not

come at the expense of network quality, we next examined how the edge threshold affects the

quality of the networks produced by GENIE3 as assessed by functional edge ratio. Increasing

the edge threshold leads to networks of higher quality, although even at the least stringent

threshold used in this study the resulting 200000 edge network is still better than a randomized

network of the same size, showing that networks can be extremely large and still contain high

quality information (Fig 5A). It should also be noted that the quality of networks followed an

exponential curve as network size was decreased; networks rapidly increase in quality at sizes

of 50000 edges or less. The analysis in Fig 5 examines only transcript-transcript edges, how-

ever, the specific advantage of GENIE3 is its ability to infer cross-type edges. Cross-type edges

are far sparser and also are likely to be affected by biological aspects that limit correlation

between transcripts and proteins such as post-transcriptional regulation and differences in

experimental platform. We next wanted to confirm that cross-type edges, despite being more

difficult to infer, also convey high quality functional information. We therefore determined



the functional edge ratio of cross-type edges specifically in networks inferred using GENIE3.

This analysis showed that cross-type edges made by GENIE3 are of lower functional quality

than transcript-transcript edges. However, they are still better than edges produced in ran-

domized network at higher edge thresholds (Fig 5B) and are therefore providing relevant

information regarding the co-expression of transcripts and proteins. It should be noted that

this kind of analysis, examining the functional quality of cross-type edges across edge thresh-

olds, is impossible with all other network inference methods tested here as they simply do not

create enough cross-type edges (and in many cases do not create any such edges) for analysis.

Networks derived from permutations of the input data

Multiple biological factors including post-transcriptional regulation, different rates and mecha-

nisms of RNA and protein degradation, as well as protein modifications contribute to differences

in regulation of transcript abundance and protein abundance. However, specific properties of the

data arising from the experimental approach used (microarray vs. mass spectrometry), with the

distribution of the data, or with the missing values in one type of data also may be contributing to

the observed low numbers of cross-type edges. To minimize differences among experimental

platforms we next examined the effect of averaging biological replicates within the transcriptomic

and proteomic datasets. We explored the effect of averaging in GENIE3 as well as in one repre-

sentative of each of the three clusters we identified when interrogating network overlap (Fig 3),

MINET, PCC and the original CLR_O_RS. In all network inference methods and at all edge

threshold levels, we saw an increase in cross-type edges when replicates were averaged compared

to being kept separate (Fig 6). PCC, MINET, and CLR showed the best overall improvement, far

better than GENIE3, but this is likely because GENIE3 was already well-suited to drawing cross-

type edges and there simply was little room for improvement. However, despite the increase in

cross-type edges when replicates were averaged, the functional quality of these edges decreased

Fig 4. Quality of network inference methods. The ability of networks to connect features in the same functional

category was interrogated. The ratio of edges (as a percentage) connecting annotated features in the same functional

category to all edges connecting annotated features is displayed on the y-axis. The network inference method is

displayed on the x-axis. A network of 5000 edges was examined for each network inference method. Blue bars

represent ratios of edges in the networks described here and red bars represent ratios of edges when all nodes in the

network have been randomized. Error bars indicate standard deviation of ratios from three randomized networks.

CLR_O_RS indicates the original CLR algorithm with resampling to distinguish it from the version of CLR used in the

MINET package.

https://doi.org/10.1371/journal.pcbi.1007241.g004

https://doi.org/10.1371/journal.pcbi.1007241.g004


and, in the case of MINET, CLR_O_RS and GENIE3 networks, was no higher than a randomized

network (S4 Fig). Averaging replicates also reduces the total number of edges in the network. On

average, edge thresholds used to generate networks of the same size as those inferred when repli-

cates were not averaged had to be lowered by 1.6-fold. The loss of input data that is seen when

replicates are averaged likely makes it more difficult to draw meaningful edges between features,

leading to generally smaller networks if the same edge threshold is used. Therefore, it seems that

averaging replicates prior to inferring networks using multi-omic data is not recommended.

We also tested data that had been normalized to the mean of the row as well as fold change

data when comparing to time matched mock infected samples. Normalizing by the mean of

the row had no effect on network structure, which is not surprising since most of the inference

methods used rely on assessing relative patterns of expression between features that will not be

changed by mean normalization. When determining fold change values we normalized all

abundance values to uninfected controls and as a result fewer samples were used to infer the

network. Mock infected samples were not included as they were used to determine fold change

values for infected samples. We also used only proteins with no missing values when determin-

ing fold changes across conditions and samples. This smaller dataset contained 38 samples

with abundance data for 5000 transcripts and 972 proteins. Because this dataset was different

than that used above (it has fewer samples and fewer proteins) we re-inferred networks using

abundance values from this smaller dataset as well as fold change values. We tested this dataset

using GENIE3 as well as MINET and CLR, as they were the second and third best methods for

creating integrated networks from our previous analyses. Interestingly, there was an increase

in cross-type edges for both CLR and MINET when using this smaller dataset with abundance

values. Despite these increases, GENIE3 was still the best method for inferring cross-type

edges in this smaller dataset using abundance values (Fig 7, S4 Table). When using fold

change values rather than abundance values all three methods inferred far fewer cross type

Fig 5. Quality of GENIE3 across increasing edge cutoffs. (A) The ratio of Transcript-Transcript edges (as a

percentage) connecting annotated features in the same functional category to all edges connecting annotated features

is displayed on the y-axis. The network is displayed on the x-axis. Blue bars represent ratios of edges in the networks

described here and red bars represent ratios of edges in randomized networks. Error bars indicate standard deviation

of ratios from three randomized networks. (B) The same ratio is shown for Cross-type edges specifically.

https://doi.org/10.1371/journal.pcbi.1007241.g005

https://doi.org/10.1371/journal.pcbi.1007241.g005


edges. Using fold change data, GENIE3 and CLR were essentially equal in inferring cross-type

edges with GENIE3 having slight advantage in very large (200000 edges) and very small

(5000–2500 edges) networks and CLR having a slight advantage with medium sized (10000–

12500 edges) networks (Fig 7, S4 Table). Both CLR and GENIE3 were far better than MINET

at inferring cross-type edges using fold change data.

Ranking of network inference methods using other biological datasets

The above data shows that GENIE3 is the best method for creating integrated networks when

using data from in vitro cell culture infections. We next wanted to see if this advantage held

with other datasets drawn from different experimental setups and with other kinds of–omics

Fig 6. Effects of averaging replicates on cross-type edges. (A) The number of cross-type edges identified in the seven

networks using CLR (original algorithm with resampling) when replicates are averaged (blue bars) or kept separate

(red bars). (B) Similar analysis with GENIE3, (C) Similar analysis with MINET, (D) Similar analysis with PCC.

https://doi.org/10.1371/journal.pcbi.1007241.g006

Fig 7. Effects of using fold change values on cross-type edges. (A) Using a smaller dataset of abundance values for

proteins and transcripts, networks were inferred using GENIE3 and cross-type edges determined for each network

(blue bars). Similar networks were also inferred for fold change values using this same dataset (red bars). (B) The same

analysis using CLR instead of GENIE3. (C) The same analysis using MINET instead of GENIE3.

https://doi.org/10.1371/journal.pcbi.1007241.g007

https://doi.org/10.1371/journal.pcbi.1007241.g006
https://doi.org/10.1371/journal.pcbi.1007241.g007


data, namely lipidomics. To do so we tested other datasets with GENIE3 as well as MINET and

CLR. We first tested another experiment looking at a different strain of Dengue virus

(DENV1) infecting the same cell type (U937). This experiment not only included transcrip-

tomic data and proteomic data, as the DENV4 experiment used above did, but also lipidomic

data. When looking at edges linking transcripts and proteins in this new dataset GENIE3 was

again the highest performer, identifying 81 and 177 cross-type edges in 2500 edge and 5000

edge transcript-protein networks respectively compared to only 1 and 8 edges for CLR and

only 1 edge in each network for MINET (S5 Fig). As this data included lipidomic data we next

looked at cross-type edges in a network comprised of transcripts and lipids, here GENIE3

again performed the best, identifying 15 and 34 cross-type edges in 2500 edge and 5000 edge

transcript-lipid networks respectively compared to only 1 and 13 for CLR and 3 and 14 for

MINET (S5 Fig). Finally, we also looked at a network comprised of proteins and lipids. Here,

the advantages of GENIE3 are not as apparent, MINET performs slightly better, though both

are better than CLR. GENIE was able to infer 53 and 166 edges compared to 62 and 188 edges

for MINET (CLR inferred 2 and 28 edges) (S5 Fig). We next examined other datasets that

were different from infection of cells with a virus in vitro. We examined two datasets looking at

in vivo infection of mice with influenza virus. With both of these datasets GENIE3 was again, by

far, the best method for inferring cross type edges (S6 Fig). In addition, we examined both of

these datasets specifically looking at the functional edge overlap of cross-type edges. We found,

similar to our analysis of Dengue data (Fig 5B), that the functional edge overlap of cross-type

edges from networks of this influenza data are significantly higher than that seen in a random-

ized network (S7 Fig). The fact that we see this across multiple datasets from very different

experiments (human vs. mouse, in vitro vs. in vivo, various pathogens, etc.) indicates cross-type

edges contain biologically relevant data and that this is true across multiple disparate datasets.

We also examined another mouse dataset looking at in vivo infection with West Nile Virus

(WNV). Again, with this dataset GENIE3 was the best at inferring cross-type edges (S6 Fig).

Finally, we also examined a dataset comprised of transcriptomic and proteomic analysis of ovar-

ian cancer tumors [22]. Here, each tumor represented a unique condition and we chose the

2000 random proteins with the highest variability across tumor samples based on standard devi-

ation. We then combined this dataset with the cognate transcripts matching these proteins for

which we had data (a total of 1641 transcripts). With this dataset we found that, across network

sizes, there was no significant advantage in using GENIE3, CLR, or MINET regarding cross-

type edges. With very large networks (200000 edges) GENIE3 was very similar to MINET and

both were slightly superior to CLR. With the smallest network examined (2500 edges) CLR and

MINET were slightly superior to GENIE3 with MINET and CLR each inferring about ~500

cross-type edges for this network compared to 347 for GENIE3 (S6 Fig). There were also far

more cross-type edges inferred with this data set with ~22% of edges linking a protein and a

transcript when examining large networks (200000 edges) and ~7% when examining small

(5000–2500 edges) networks. While this may have been affected by including a large number of

protein-transcript cognate pairs from the same gene, a similar analysis using 2000 random pro-

teins and 2000 random transcripts also found a higher number of cross-type edges, ~20%. This

is in contrast to networks examining Dengue infection where only ~3% of the edges were cross-

type in a large network inferred with GENIE3 and ~5% were cross-type in a small network.

Network analysis of antibody-mediated versus receptor-mediated Dengue

infection

Having shown with our analysis of Dengue virus infection that GENIE3 is the inference

method that is best able to create highly integrated and accurate networks of proteomic and



transcriptomic data we applied this approach to comparison of networks derived from recep-

tor-mediated Dengue virus infection and antibody-mediated Dengue virus infection. Studies

of DENV3 using multiplicities of infection similar to those used here have shown that Dengue

virus can benefit from antibody dependent enhancement during infection. Non-neutralizing

monoclonal antibodies against Dengue virus already present in the host can increase invasion

of this virus into cells of the immune system including monocytes, dendritic cells and macro-

phages [46–48]. Infection by the antibody-mediated route can also lead to more serious disease

development with increased suppression of host antiviral response [46]. Because of these dif-

ferences in viral entry into the cell and subsequent changes in disease we examined networks

inferred using only data from Dengue infection via an antibody-mediated route and compared

that to a network inferred using only data from Dengue infection via a receptor-mediated

route. Both transcriptomic and proteomic data was used to infer integrated networks contain-

ing 5000 edges using GENIE3, one for antibody-mediated infection data and one for receptor-

mediated infection data.

Network centrality in biological networks is an indicator of the importance of the node

(transcript or protein) to the function of the network [16, 49, 50]. Pathways with higher cen-

trality in host response networks may be more important to the host response and/or may be

more coordinated in terms of their activity. To that end, the centrality of features in KEGG

pathways was compared between each network to identify functions that may have higher or

lower centrality in an antibody vs. receptor-mediated network. We used betweenness, the

number of paths through a network that pass through the gene in question, as a measure of

centrality. Studies of centrality in networks of other organisms (including those looking at

human pathogens) have shown that betweenness can be used as a proxy for importance or

essentiality with genes of higher betweenness being more important [24, 29]. There were a

large number of functional categories whose genes showed differences in betweenness between

the two networks (S5 Table) including those responding to granulocyte-macrophage colony-

stimulating factor (GM-CSF) and IL-4. Features that showed decreased expression in response

to GM-CSF or IL-4 had, on average, a 2.2-fold higher centrality value in an antibody-mediated

network compared to a receptor-mediated network. This difference was significant using a

Wilcoxon rank sum test with a p-value of 0.0019 (FDR of 0.144). As with other networks

inferred with GENIE3 both the antibody-mediated and receptor-mediated network were

highly integrated. Within the category of features showing decreased expression in response to

GM-CSF or IL-4 in each network were both proteins and transcripts and several of these had

cross-type edges. To further examine the specific contribution from integrated networks made

from multi-omic data with cross-type edges (as opposed to networks inferred from only one

type of–omic data) we also inferred the same antibody-mediated and receptor-mediated net-

works but using only transcriptomic data. When comparing these transcriptomic-only net-

works we were not able to identify any significant difference in the centrality of genes involved

in CSF or IL-4. In addition, other pathways showing differences in centrality that were related

to viral infection such as response to reovirus infection and cytokine response were also not

found in a transcript-only network but only in a network of integrated transcriptomic-proteo-

mic data (S6 Table). This observation, combined with the fact that both transcripts and

proteins were among those involved with CSF or IL-4 showing changes in centrality, demon-

strates the fact that integration of multi-omic data into a network is contributing to the biolog-

ical results shown here. It is important to note that this in-depth analysis is carried out only on

a single dataset and while we do see that cross-type edges contain biological relevant data

across other datasets (S7 Fig) it will be of interest in future studies to examine these datasets

with the level of detail we apply to the Dengue study here. This would reveal whether, and to



what degree, cross-type edges can aid in the biological interpretation of networks and what

they can show about response of hosts to pathogens or to other stress conditions.

Based on previous analysis of these features they are likely involved in anti-inflammatory

pathways as they are downregulated when T cells proliferate upon being stimulated with IL-4

and GM-CSF [51]. As centrality is a measure of importance, the more central position of these

features in an antibody-mediated entry network suggests that this route of infection for the

virus may lead to downregulation of innate immune pathways and lead to the more enhanced

disease outcome seen with antibody-mediated vs. receptor-mediated entry. Other studies have

also identified an upregulation of anti-inflammatory cytokines when antibody-mediated entry

is undertaken by Dengue [48, 52].

Discussion

The lack of integration in networks comprised of multiple–omics types can be a serious hin-

drance to using these networks as accurate, robust and predictive models of biological systems.

Using in vitro infection data, we show here that GENIE3, a random forest based method, gen-

erates, by far, the most integrated networks of ten inference methods tested. This integration

does not come at the cost of edge quality as GENIE3 performs as well as other methods at link-

ing features of similar functional roles. Network analysis is a powerful way to view complex

systems such as host-pathogen interactions. Using GENIE3, we built integrated networks of

data derived from an antibody-mediated Dengue infection experiment and a receptor-medi-

ated Dengue infection experiment and highlight innate immune pathways that are different

between networks representing both viral entry mechanisms.

Even when using GENIE3 cross-type edges remain a minority in the in vitro dataset we

examine, comprising only 3.5–5.4% of total edges in the network. There are a number of rea-

sons why such cross-type edges may not be as prevalent as other edges with the most likely rea-

son being regulatory patterns of the cell that are unique to either proteins or transcripts.

However, cell timing of transcription and translation as well as methodological elements of all

of network inference approaches examined here may also hinder the formation of cross-type

edges. When collecting transcriptomic and proteomic data from a biological system such as an

infected cell, transcripts identified as highly expressed or changing their expression patterns

act as templates for functional proteins that will be translated at some later time point. This is

likely to be more prominent in early time points when systems are still adjusting to the pertur-

bations of the experiment. Because of this time lag, transcripts coding for genes belonging to

certain functional pathways will show their expression changes earlier than corresponding

proteins of the same pathway. This lag may make it more difficult to identify instances of co-

expression between transcripts and proteins of the same functional category. In contrast, tran-

script pairs belonging to the same functional category and protein pairs belonging to the same

functional category, being expressed at roughly the same time, are more likely to have edges.

This is likely also the reason why cross-type edges drawn by GENIE3 are not as accurate as

edges drawn between two transcripts (Fig 5B). It may be of interest to explore methods of

building multi-omic networks that attempt to correct this time lag [53]. This might be done by

combining early time point transcriptomic data and late time point proteomic data. However,

the challenges of combining different -omics datasets from different time points and accurately

correcting for the protein translation time lag would be difficult. In addition, we demonstrate

here only networks of two omics types (transcript-proteomic, lipid-proteomic, etc.). However,

future analyses could infer networks of all three -omics types at once, making a potentially

more robust network containing more data.



Despite these challenges and the small number of cross-type edges, GENIE3 does emerge as

the best method for inferring integrated networks, specifically of proteomic and transcrip-

tomic data. One of the reasons for this may be the fact that, unlike the other nine methods

used, GENIE3 relies on a random forest approach to generate networks. Random forest is an

ensemble method that can combine strengths of many weak signals to build better models,

and is therefore likely more sensitive to biological signals. It is also able to work with different

types of input data and does not require linear relationships between features to establish

edges (though this quality is shared by several other methods we examined). Another possible

advantage of GENIE3 may lie in its ability to handle values of zero supplied as a substitute for

missing values in protein data. When networks were inferred with no missing values for any

protein under any condition both CLR and MINET were able to infer more cross-type edges

compared to a dataset containing proteins with missing values in some of the conditions.

However, GENIE3 was not affected by this difference in the dataset suggesting that this

approach may also be especially useful when inferring networks from datasets with missing

values, a common feature of proteomic data.

Another observation of interest that emerged from these studies was the functional quality

of GENIE3 networks and how this accuracy changes as a function of edge cutoff; smaller,

more stringent networks are more accurate than larger networks. This increase in network

accuracy among smaller networks was also seen when CLR_O_RS and MINET were used.

While all of the networks used here, aside from those that averaged replicates, showed higher

accuracy compared to a randomized network, if edge cutoffs are increasingly made less strin-

gent, a point will eventually be reached where the functional edge ratio is no higher than a ran-

domized network. Examining networks made by GENIE3 suggests that this point will be

reached with a network of 371535 edges (representing the top 0.77% of all possible edges). The

choice of edge threshold is somewhat arbitrary but our analysis suggests that there is a hard

lower limit to network size if quality is to be maintained. While making edge threshold less

stringent always leads to larger networks, defining a “floor” will help researchers reach a bal-

ance between the maximum number of edges and networks of the best quality.

We show here that GENIE3 is the best method for inferring networks from multiple data

types, but when networks are built from the same–omics type other methods we tested here

may be a better choice. As we described above, MRNETB created networks of the highest func-

tional quality when examining transcript-transcript edges (Fig 4A). Other methods also have

the advantage of speed with GENIE3 being, by far, the slowest of the 10 methods we tested,

taking several hours to run while the other methods, including MRNETB, ran in a matter of

minutes. Among the networks tested, only Pearson and Spearman distinguish between posi-

tive and negative correlation. Among these two, Spearman was more accurate with a func-

tional edge ratio of 46%, compared to PCC with a functional edge ratio of 36%, suggesting that

it may be the superior method when integration is not needed but direction of correlation is.

Choice of methods depends on experimental needs; MRNETB is fast and accurate but is poor

at integration and does not determine whether nodes are positively or negatively correlated.

GENIE3 makes highly integrated networks but is slow and again does not determine whether

nodes are positively or negatively correlated. Spearman does determine whether nodes are pos-

itively or negatively correlated and is fairly accurate but is very poor at integration. It is also

important to point out that the dataset we have here, containing nearly 100 datapoints is actu-

ally somewhat small compared to other studies using network inference. While there have

been several studies that use datasets of a size similar to ours or smaller [54–56] most studies

contain many hundreds of samples. It will be of interest to determine how the choice of net-

work inference method, particularly the use of GENIE3, may be affected by very large sample

sizes. It is also likely that autocorrelation may exist in these samples as they are collected from



a relatively short time frame. However, since all of the methods are compared across the same

datasets if autocorrelation is present it would affect all network inference methods equally.

The advantages of GENIE3 may be less useful when examining multi-omics data from dif-

ferent experimental setups, specifically in vivo datasets or multi-omic data where both–omics

types are drawn from a mass-spectrometry technology. Here, multi-omics data from short

term, in vitro, time course experiments led to far fewer cross-type edges compared to clinical

data collected directly from patients. There are likely many reasons for this but it may be

related to the high amount of sampling during in vitro experiments compared to clinical data,

with in vitro experiments collecting several samples over a matter of hours rather than over

weeks or months as is often the case with clinical data. This increased sampling, used with in

vitro experiments, may capture cell responses as they are initially responding to stress pertur-

bations with many regulatory signals happening over a short time frame and leading to more

discrepancies between cognate transcript-protein pairs. The resulting paucity of cross-type

edges amplified the advantage of GENIE3, making this method the only choice for this data

type in creating networks with a significant number of cross-type edges. In contrast, data col-

lected from clinical experiments is over a much longer time frame or, in some cases, only a sin-

gle sample is collected. In this second case regulatory pathways controlling transcript and

protein expression may have more time to converge, leading to more correlation in the expres-

sion and regulation of cognate transcript-protein pairs, more cross-type edges and the option

of using other network inference tools. It may also be that uniform nature and response of

cells used in in vitro infection experiments may expose and amplify differences between pro-

teins and transcripts. In contrast, samples collected from patients and tumors are a mixture of

cell types and responses, which may smooth out inherent differences between transcripts and

proteins and lead to more cross-type edges. It is also possible that autocorrelation, which exists

in many of the in vitro datasets examined here but not the in vivo tumor sets may also contrib-

ute to the larger number of cross-type edges seen with GENIE3. When examining such clinical

data, GENIE3 is no better or worse with regard to cross-type edges than other methods of

inferring networks such as CLR and MINET. It should be noted that all three of these methods

are still superior to correlation based methods such as Spearman or Pearson. GENIE3 and

MINET also find approximately the same number of cross-type edges when examining a

proteomic-lipidomic dataset. The fact that a similar result emerges with these two methods

only when examining proteomic- lipidomic data, and not proteomic-transcriptomic data or

lipidomic-transcriptomic data, suggests that the advantages of GENIE3 may be in linking

multi-omic data across different methodological platforms. When one kind of multi-omic

data comes from a mass spectrometry platform and one kind comes from a microarray plat-

form (such as proteomic-transcriptomic data or lipidomics-transcriptomic) GENIE3 is by far

the best option. However, when both–omics types come from a mass spectrometry platform

(such as proteomic-lipidomic) then MINET is able to identify slightly more cross-type edges

compared to GENIE3. This suggests that when examining two–omics types that are both mass

spectrometry based (proteomics, lipidomics, metabolomics, phospho-proteomics) MINET

may be another viable option. It is important to note however that GENIE3 was able to infer a

higher functional edge overlap than MINET and thus may be more accurate.

Networks made from multi-omics data are some of the best ways to analyze large datasets

and provide a high level but gene and protein-specific view of biological systems. The work

presented here provides several approaches for making integrated networks of high functional

quality that link different data types. Our approach has also revealed the differing behavior of

anti-inflammatory genes in an antibody-mediated versus receptor-mediated network of Den-

gue infection, information that will be of value as new antiviral treatments are developed for

these diseases. While future directions will focus on increasing cross-type edges further and in



using network approaches to examine other aspects of viral infections these experiments pro-

vide some of the first systematic ranking of methods used to create integrated networks and

lay out strategies for how to infer them and which specific methods to use.

Methods

Cells and viruses

Viruses were propagated in C6/36 Aedes albopictus cells grown in minimal essential medium

(Gibco, Grand Island, NY) at 32˚C. U937 cells were transfected with a lentivirus vector

expressing DC-SIGN, or passaged in parallel, and sorted by FACS. U937 and U937+DC-SIGN

cells were maintained in RPMI-1640 (Gibco) at 37˚C. Growth media were supplemented with

5% fetal bovine serum (HyClone, Logan, UT), 0.1 mM nonessential amino acids (Gibco), 100

U/ml penicillin and 100 mg/ml streptomycin (Gibco). U937 and U937+DC-SIGN media was

supplemented with 2 mM GlutaMAX (Gibco), 10mM HEPES (Cellgro, Manassas, VA). U937

+DC-SIGN media included 2-mercaptoethanol (Sigma, St Louis, MO). All infection media

contained 2% fetal bovine serum. Cells were incubated in the presence of 5% CO2.

Infectious clones of wild-type strains were constructed using a quadripartite cDNA clone.

The DENV4 (Sri Lanka 92) strain was used in the present study. Full-length cDNA was tran-

scribed into genome-length RNAs using T7 polymerase and recombinant viruses isolated in

C6/36 cells as previously described. Virus was then passaged twice on C6/36 cells, centrifuged

to remove cellular debris, and stored at −80˚C as a working stock.

In vitro experiments

Fc receptor and DC-SIGN mediated entry were titered, and at 24 hours post-infection, condi-

tions were optimized to obtain 60% infection for both entry mechanisms. Each experiment

had five infection conditions: U937+DC-SIGN mock infected, U937+DC-SIGN DENV

infected, U937 mock infected, U937 DENV+Ab infected and U937 DENV + Ab isotype con-

trol (a control condition for Ab-mediated infection). Each condition was examined under four

timepoints (2, 8, 16 and 24 hours post-infection). Each timepoint for each condition was

examined with five replicates with a few exceptions, four replicates were collected for the fol-

lowing conditions/timepoints: 2 hours post-infection U937+DC-SIGN mock infected, 8 hours

post-infection U937+DC-SIGN mock infected, 2 hours post-infection U937 DENV+Ab

infected, 24 hours post-infection U937 DENV+Ab infected and 2 hours post-infection U937

DENV + Ab isotype control. With all conditions, timepoints and replicates there were 95 data

points comprising this dataset. The virus:antibody/mock mixtures were incubated for 45 min-

utes in 12-well plates at 37˚C. Following this incubation, 1x106 U937 or U937+DC-SIGN cells

were added and the infection was allowed to proceed for 2 hours at 37˚C. The 2 hour time

point was collected, and the rest of the cells were centrifuged for 2 minutes at 450XG and

resuspended in fresh infection media. The collection timepoints were 2, 8, 16, and 24 hours

post infection. Cells were initially grown and then placed into separate wells for infection

assays, with RNA and protein being collected from cells in different wells. For each timepoint

cells collected for RNA were pelleted and resuspended in TRIzol. Cells collected for proteomics

were filtered, washed twice with sterile PBS, pelleted and dried. Samples were stored at -80˚C

until processed.

Transcriptomic analysis

Infected cell samples were pelleted and frozen. Samples were sent to Arraystar (Rockville, MD)

for RNA extraction and microarray analysis with the Agilent Human 4 x 44K gene expression



array. Total RNA from each sample was quantified using the NanoDrop ND-1000 and RNA

integrity was assessed by standard denaturing agarose gel electrophoresis. For microarray anal-

ysis, the Agilent Array platform was employed. The sample preparation and microarray

hybridization were performed based on the manufacturer’s standard protocols. Briefly, total

RNA from each sample was amplified and transcribed into fluorescent cRNA using the manu-

facturer’s Agilent’s Quick Amp Labeling protocol (version 5.7, Agilent Technologies). The

labeled cRNAs were hybridized onto the Whole Human Genome Oligo Microarray (4 x 44K,

Agilent Technologies). After washing the slides, the arrays were scanned by the Agilent Scan-

ner G2505C.

Analysis of transcriptomic data

Background correction was carried out on microarray samples using the maximum likelihood

estimation for the normal-exponential convolution model [57], with an offset of 50, as imple-

mented in Bioconductor’s [58] limma package [59]. Samples were then normalized using

quantile normalization so that the entire empirical distribution of each column was identical,

this includes log2-transformation of the data. Outliers among samples were detected using

intensity distribution and a boxplot graph followed by hierarchical clustering and PCA analy-

sis of expression profiles using the MVA package [60]. Any sample that did not visually cluster

with other samples of the same condition was removed. For this dataset, only one sample was

removed as a result of outlier detection, 1 replicate of the U937 DENV+Ab 24 hour timepoint.

To identify differentially expressed probes, we use Bioconductor’s limma package [59], which

calculates a p-value based on a moderated t-statistic (recommended for experiments with

small sample sizes) and then adjusts it to correct for the effects of multiple hypothesis testing.

To adjust the p-value, we use the method of Benjamini and Hochberg [61] that controls the

false discovery rate (FDR or q-value).

Proteomics sample processing and analysis

Infected cell samples were pelleted and a 2:1 mixture of chloroform:methanol was added to

each sample at a ratio of 5:1 over the sample volume, vortexed, and incubated for 5 minutes on

ice. Samples were then centrifuged at 12,000 rpm at 4˚C for 10 minutes. The upper (aqueous)

and lower (organic) layers were removed to fresh tubes, and dried using a Speed-vac. The pro-

tein interlayers were washed with ice cold methanol, vortexed, and centrifuged at 12,000 rpm

for 10 minutes. Following centrifugation, the methanol was removed from the samples and

each was allowed to dry completely. Pellets were then rehydrated in 100 uL of 8 M urea in 50

mM NH4HCO3 buffer. Protein concentrations were then determined using the bicinchoninic

acid (BCA) protein assay (ThermoFisher Pierce, Waltham, MA). Dithiothreitol (DTT, Ther-

moFisher Pierce, Waltham, MA) was added to each sample to obtain a 5 mM concentration

and the samples were incubated at 37˚C for 1 hour with shaking at 800 rpm on a Thermomixer

(Eppendorf, Hauppauge, NY). Iodoacetamide (ThermoFisher Pierce, Waltham, MA) was

added to a final concentration of 40 mM in each sample and then incubated again at 37˚C for

1 hour in the dark with shaking at 800 rpm on a Thermomixer. The samples were then diluted

8-fold with 50 mM NH4HCO3 and CaCl2 was added to obtain 1 mM concentration in each

sample. Trypsin (1:50 trypsin:protein w:w, USB Affymetrix, Cleveland, OH) was added and

the samples were incubated for 3 hours at 37˚C with 800 rpm shaking on a Thermomixer. The

samples were then flash frozen in liquid nitrogen and stored at -70˚C until the solid phase

extraction (SPE) cleanup was performed. Samples were thawed, centrifuged at 21,000 x g for 5

minutes at RT and then subjected to C18 SPE cleanup on Strata C18-E 50 mg/1 mL columns

(Phenomenex, Torrance, CA) using an automated SPE station (Gilson GX-274, Middleton,



WI). Briefly, the columns were conditioned with 3 mL methanol followed by 2 mL of 0.1% tri-

fluoroacetic acid (TFA). After the samples were loaded on the columns, they were rinsed with

4 mL of 95:5 water:acetonitrile with 0.1% TFA. The columns were allowed to dry, after which

the samples were eluted with 1 mL of 80:20 acetonitrile:water with 0.1% TFA. The samples

were concentrated using a Speed Vac (ThermoFisher Scientific, Waltham, MA) to 50 uL and a

final BCA protein assay was performed to quantitate the peptide mass. The samples were

diluted to 0.1 ug/uL in water for analysis by LC-MS/MS.

Analysis consisted of reverse-phase LC-MS/MS using Waters nano-Acquity M-Class dual

pumping UPLC system (Milford, MA) configured for online trapping and interfaced with a

Q-Exactive Plus hybrid quadrupole/Orbitrap mass spectrometer (Thermo Scientific, San Jose,

CA). Both trapping and analytical columns were packed in-house using 360 μm o.d. fused sil-

ica (Polymicro Technologies Inc., Phoenix, AZ) with 1-cm sol-gel frits for media retention and

contained Jupiter C18 media (Phenomenex, Torrence, CA) in 5μm particle size for the trap-

ping column (150 μm i.d. x 4 cm long) and 3 μm particle size for the analytical column (75 μm

i.d. x 70 cm long). A 5 μL injection at 5 μL/min was loaded onto trapping column and eluted

by reverse direction elution onto the analytical column at 300 nL/min. Mobile phases consisted

of (A) 0.1% formic acid in water and (B) 0.1% formic acid in acetonitrile with the following

gradient profile (min, %B): 0, 1; 2, 8; 20, 12; 75, 30; 97, 45; 100, 95; 105, 95; 110, 1; 140, 1. The

analytical column was coupled to the mass spectrometer with a home built nano-electrospray

ionization interface. Electrospray emitters were chemically etched in-house using 150 um o.d.

x 20 um i.d. fused silica. The mass spectrometer inlet was maintained at a temperature of

350˚C and spray voltage was at 2.2kV. Data were collected for 100 min following a 20 min

delay from sample injection. A precursor FT-MS scan was performed from 400–2000 m/z at a

resolution of 35k (AGC target 3e6) and the top 12 FT-HCD-MS/MS spectra were acquired in

data dependent mode with an isolation window of 2.0 m/z and at a resolution of 17.5k (AGC

target 1e5) using a normalized collision energy of 30 and a 30 sec exclusion time.

Analysis of proteomics data

The initial dataset contained 100 LC-MS instrument runs associated with 100 unique biologi-

cal samples and 41,947 unique peptides that had at least 2 observations across the 100 biologi-

cal samples. This corresponded to 5,705 proteins of which 5,699 were human and 6 were viral.

The algorithm RMD-PAV [62] was used to identify any outlier biological samples, of which 4

were identified (one replicate each from the control for the receptor-mediated Dengue virus

infection at the 2hr and 8hr timepoint, one replicate from the control for the antibody-medi-

ated Dengue virus infection at the 2hr timepoint and one replicate from the antibody-medi-

ated Dengue virus infection at the 2hr timepoint) and confirmed via Pearson correlation.

Peptides with inadequate data for either qualitative or quantitative statistical tests were also

removed from the dataset [63], resulting in a final dataset ready for normalization that

included 96 unique biological samples and 29,694 measured unique peptides corresponding to

4,333 proteins (4,333 human/0 viral). SPANS was used and selected L Order Statistics (LOS)

median centering [64] with a parameter of 0.2 for normalization.

Peptides were evaluated with Analysis of Variance (ANOVA) with a Dunnett test correc-

tion and a Bonferroni-corrected g-test to compare each virus to the associated mock within

each time point. To perform signature-based protein quantification, BP-Quant [65], each

peptide was categorized as a vector of length equal to the number of viruses being evaluated.

If all comparisons for all time points are 0 for a specific virus it is considered as non-chang-

ing and given a value of 0. If there are more time points with an increase in virus to mock

than decreasing it is categorized as a +1 and the contrary -1 is given for the decrease in virus



to mock. BP-Quant was run with a default parameter of 0.9. All proteins were then analyzed

using the same methodology as for the peptides; ANOVA with a Dunnett test correction

and a Bonferroni-corrected g-test to compare each virus to the associated mock within each

time point.

Network analysis

For Dengue-derived networks 5000 human transcripts that were differentially regulated

(> 2-fold change, q-value < 0.05) when comparing virus to time-matched mock samples were

selected. We also chose 1930 human proteins that were differentially regulated (> 2-fold

change, q-value< 0.05) and had missing values in no more than half of the samples examined.

Missing values that were present in the protein dataset were replaced with “0” to allow compat-

ibility with all network inference methods. The complete Dengue dataset consisted of 6930 fea-

tures examined under 20 conditions with either four or five biological replicates queried for

each condition, a total of 95 columns of data.

Networks were inferred using 10 feature association metrics that were chosen based on sev-

eral criteria. We chose to use methods that had been used in the past to infer networks [23, 66–

68], we chose methods that used a variety of mathematical approaches to infer networks such

as mutual information, correlation, and random forest, and we chose methods that had previ-

ously been examined in the DREAM5 challenge based on ranking networks by their ability to

link known regulator-target pairs in Escherichia coli [42]. The inference methods chosen were

Pearson correlation coefficient (PCC), Spearman correlation coefficient, Context Likelihood

of Relatedness (CLR), a mutual information based metric [33], six additional mutual informa-

tion methods in the MINET R package (ARACNE, CLR, MIM, MINET, MRNET, MRNETB)

[43], and GENIE3, a random forest method that computes the links between each gene p and

all other genes j-p as a function of the predictive nature of j-p on p [69]. Note that the MINET

implementation of CLR is somewhat different than the original implementation described by

Faith, et. al. [33], so was included here as a related, but distinct, method. The original method

uses a binning step to transform continuous expression values in to categorical values before

calculation of mutual information and Z-score, the MINET implementation removes this bin-

ning step. We also use a resampling approach on the original method [70] that is not used in

the MINET implementation. Briefly, this resampling approach consists of inferring several

incident networks after randomly removing 20% of the data columns. A consensus network

was then made from these incident networks that averaged Z-scores, this consensus network

was used for downstream analysis. This resampling with the original CLR algorithm is referred

to as CLR_O_RS here to distinguish it from the CLR program used in the MINET package.

Transcripts and proteins were preserved as independent nodes in all networks. For each

method a threshold was used for each network to define an edge, pairs of features with edge

weights above this threshold were included in the network with an edge drawn between them.

Once edges were determined to be above the threshold and included in the network all edges

were considered equivalent (unweighted). Thresholds used to define edges were chosen for

each inference method so that networks of identical size could be compared. Networks ranged

in size from 200000 to 2500 edges, representing the top 0.42 and 0.005% of all possible edges

respectively (S4 Table). For all networks transcripts and proteins were kept as separate nodes

in the network, the same gene can be represented by either a transcript or a protein (or both)

and each of these is a unique node in the network. We also inferred additional networks using

transcriptomic and proteomic data from other studies. These include a publically available

dataset of in vivo infections of mice with West Nile Virus (WNV) (GEO Accession numbers:

GSE77192, GSE77193 and GSE78888), publically available datasets of in vivo infections of



mice with influenza (GEO Accession numbers GSE68946 and GSE71759) and a dataset exam-

ining tumor samples from cancer patients [22].

To compare how well networks agreed with known data and how accurate they were, we

compared the ability of networks to draw edges between features within the same functional

category. Annotation of features (transcripts and proteins) was obtained from the KEGG data-

base based on the Molecular Signatures Database (MSigDB) [44, 45]. Ratios were determined

for edges connecting two annotated features in the same functional category/all edges connect-

ing two annotated features with these ratios expressed as a percentage. This ratio can range

from 0% (no edges connecting annotated genes are those connecting genes in the same func-

tional category) to 100% (all edges connecting annotated genes are those connecting genes in

the same functional category) and is referred to as the functional edge ratio, a higher functional

edge ratio means more edges linked features in the same functional category and the network

is more accurate. When randomizing networks for this comparison an identical node-degree

distribution was used and only the identity of the individual nodes was shuffled.

Supporting information

S1 Fig. Transcript-protein network made with Pearson correlation coefficient. Using a

PCC cutoff of ~0.85 a network of 100000 edges and 5016 nodes was generated. Proteins in the

network are colored red and transcripts green. Some small, unconnected clusters of transcripts

or proteins have been removed.

(PDF)

S2 Fig. Boxplot of transcriptomic and proteomic value distributions. (A) Boxplot showing

distributions of transcriptomic and proteomic data. (B) Boxplot showing matched distribu-

tions of transcriptomic and proteomic data after multiplying all transcriptomic gene expres-

sion values by a factor of 2.6.

(PDF)

S3 Fig. Small networks of Pearson correlation, CLR and GENIE3. Networks of 5000 edges

were generated using (A) Pearson correlation, (B) CLR and (C) GENIE3. Proteins in the net-

work are colored red and transcripts green. Some small, unconnected clusters of transcripts or

proteins have been removed.

(PDF)

S4 Fig. Accuracy of network inference methods using averaged replicates. The ratio of

cross-type edges connecting annotated features in the same functional category to all cross-

type edges connecting annotated features is displayed on the y-axis. The network is displayed

on the x-axis. Blue bars represent networks made with GENIE3, red bars represent networks

made with CLR (original algorithm with resampling) and green bars represent networks made

with MINET. Networks 5, 6 and 7 made using CLR had no cross-type edges with functional

annotation and Networks 6 and 7 made using MINET had no cross-type edges with functional

annotation so these bars are not displayed.

(PDF)

S5 Fig. Comparison of network inference method’s ability to generate cross-type edges in

other–omic datatypes. (A) Using lipidomics and proteomics data from infection of human

cells with Dengue D1 virus networks were made with three different methods and edge cutoffs

were chosen so that all networks of a particular number are the same size across inference

methods. The number of Cross-type edges for each network are shown on the y-axis and the

methods on the x-axis. (B) A similar analysis as in (A) but looking at proteomic-transcriptomic
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data from infection of human cells with Dengue D1 virus. (C) A similar analysis as in (A) but

looking at lipidomic-transcriptomic data from infection of human cells with Dengue D1 virus.

(PDF)

S6 Fig. Comparison of network inference method’s ability to generate cross-type edges in

other datasets. (A) Using proteomic and transcriptomic data from infection of mice with

Influenza virus (GEO Accession number GSE68946) networks were made with three different

methods and edge cutoffs were chosen so that all networks of a particular number are the

same size across inference methods. The number of Cross-type edges for each network are

shown on the y-axis and the methods on the x-axis. (B) A similar analysis as in (A) but using a

different data set examining infection of mice with influenza virus (GEO Accession number

GSE71759). (C) A similar analysis as in (A) but using proteomic and transcriptomic data from

mice infected with West Nile Virus (WNV). (D) A similar analysis as in (A) but using proteo-

mic and transcriptomic data human ovarian tumor samples.

(PDF)

S7 Fig. Functional edge overlaps for mouse influenza networks. (A) Functional edge overlap

of cross-type edges in networks inferred from infection of mice with Influenza virus (GEO

Accession number GSE68946). Blue bars represent ratios of edges in the networks described

here and red bars represent ratios of edges in randomized networks. Error bars indicate stan-

dard deviation of ratios from three randomized networks. (B) A similar analysis as in (A) but

using a different data set examining infection of mice with influenza virus (GEO Accession

number GSE71759).

(PDF)

S1 Table. Functional enrichment of transcripts showing differential expression in Dengue

virus infected cells vs. mock infected cells at 24 hours post-infection.

(XLSX)

S2 Table. Functional enrichment of transcripts showing differential expression in anti-

body-mediated Dengue virus infected cells vs. mock infected cells at 24 hours post-infec-

tion.

(XLSX)

S3 Table. Functional enrichment of proteins showing differential abundance in antibody-

mediated Dengue virus infected cells vs. mock infected cells at 24 hours post-infection.

(XLSX)

S4 Table. Edge cutoffs, network sizes and number of cross type edges for all networks.

(XLSX)

S5 Table. KEGG functions showing differential centrality in an antibody-mediated net-

work versus a receptor-mediated network built from transcriptomic and proteomic data.

(XLSX)

S6 Table. KEGG functions showing differential centrality in an antibody-mediated net-

work versus a receptor-mediated network built only from transcriptomic data.

(XLSX)
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