121 research outputs found

    Environmental boundary conditions for the origin of life converge to an organo-sulfur metabolism

    Full text link
    Published in final edited form as: Nat Ecol Evol. 2019 December ; 3(12): 1715–1724. doi:10.1038/s41559-019-1018-8.It has been suggested that a deep memory of early life is hidden in the architecture of metabolic networks, whose reactions could have been catalyzed by small molecules or minerals before genetically encoded enzymes. A major challenge in unravelling these early steps is assessing the plausibility of a connected, thermodynamically consistent proto-metabolism under different geochemical conditions, which are still surrounded by high uncertainty. Here we combine network-based algorithms with physico-chemical constraints on chemical reaction networks to systematically show how different combinations of parameters (temperature, pH, redox potential and availability of molecular precursors) could have affected the evolution of a proto-metabolism. Our analysis of possible trajectories indicates that a subset of boundary conditions converges to an organo-sulfur-based proto-metabolic network fuelled by a thioester- and redox-driven variant of the reductive tricarboxylic acid cycle that is capable of producing lipids and keto acids. Surprisingly, environmental sources of fixed nitrogen and low-potential electron donors are not necessary for the earliest phases of biochemical evolution. We use one of these networks to build a steady-state dynamical metabolic model of a protocell, and find that different combinations of carbon sources and electron donors can support the continuous production of a minimal ancient 'biomass' composed of putative early biopolymers and fatty acids.80NSSC17K0295 - Intramural NASA; 80NSSC17K0296 - Intramural NASA; T32 GM100842 - NIGMS NIH HHSAccepted manuscrip

    Remnants of an ancient metabolism without phosphate

    Full text link
    Phosphate is essential for all living systems, serving as a building block of genetic and metabolic machinery. However, it is unclear how phosphate could have assumed these central roles on primordial Earth, given its poor geochemical accessibility. We used systems biology approaches to explore the alternative hypothesis that a protometabolism could have emerged prior to the incorporation of phosphate. Surprisingly, we identified a cryptic phosphate-independent core metabolism producible from simple prebiotic compounds. This network is predicted to support the biosynthesis of a broad category of key biomolecules. Its enrichment for enzymes utilizing iron-sulfur clusters, and the fact that thermodynamic bottlenecks are more readily overcome by thioester rather than phosphate couplings, suggest that this network may constitute a "metabolic fossil" of an early phosphate-free nonenzymatic biochemistry. Our results corroborate and expand previous proposals that a putative thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system. PAPERCLIP

    Dopamine and Glutamate Induce Distinct Striatal Splice Forms of Ania-6, an RNA Polymerase II-Associated Cyclin

    Get PDF
    AbstractControl of neuronal gene expression by drugs or neurotransmitters is a critical step in long-term neural plasticity. Here, we show that a gene induced in the striatum by cocaine or direct dopamine stimulation, ania-6, is a member of a novel family of cyclins with homology to cyclins K/T/H/C. Further, different types of neurotransmitter stimulation cause selective induction of distinct ania-6 isoforms, through alternative splicing. The longer Ania-6 protein colocalizes with nuclear speckles and is associated with key elements of the RNA elongation/processing complex, including the hyperphosphorylated form of RNA polymerase II, the splicing factor SC-35, and the p110 PITSLRE cyclin-dependent kinase. Distinct types of neuronal stimulation may therefore differentially modulate nuclear RNA processing, through altered transcription and splicing of ania-6

    The Integrative Conjugative Element clc (ICEclc) of Pseudomonas aeruginosa JB2

    Get PDF
    Integrative conjugative elements (ICE) are a diverse group of chromosomally integrated, self-transmissible mobile genetic elements (MGE) that are active in shaping the functions of bacteria and bacterial communities. Each type of ICE carries a characteristic set of core genes encoding functions essential for maintenance and self-transmission, and cargo genes that endow on hosts phenotypes beneficial for niche adaptation. An important area to which ICE can contribute beneficial functions is the biodegradation of xenobiotic compounds. In the biodegradation realm, the best-characterized ICE is ICEclc, which carries cargo genes encoding for ortho-cleavage of chlorocatechols (clc genes) and aminophenol metabolism (amn genes). The element was originally identified in the 3-chlorobenzoate-degrader Pseudomonas knackmussii B13, and the closest relative is a nearly identical element in Burkholderia xenovorans LB400 (designated ICEclc-B13 and ICEclc-LB400, respectively). In the present report, genome sequencing of the o-chlorobenzoate degrader Pseudomonas aeruginosa JB2 was used to identify a new member of the ICEclc family, ICEclc-JB2. The cargo of ICEclc-JB2 differs from that of ICEclc-B13 and ICEclc-LB400 in consisting of a unique combination of genes that encode for the utilization of o-halobenzoates and o-hydroxybenzoate as growth substrates (ohb genes and hyb genes, respectively) and which are duplicated in a tandem repeat. Also, ICEclc-JB2 lacks an operon of regulatory genes (tciR-marR-mfsR) that is present in the other two ICEclc, and which controls excision from the host. Thus, the mechanisms regulating intracellular behavior of ICEclc-JB2 may differ from that of its close relatives. The entire tandem repeat in ICEclc-JB2 can excise independently from the element in a process apparently involving transposases/insertion sequence associated with the repeats. Excision of the repeats removes important niche adaptation genes from ICEclc-JB2, rendering it less beneficial to the host. However, the reduced version of ICEclc-JB2 could now acquire new genes that might be beneficial to a future host and, consequently, to the survival of ICEclc-JB2. Collectively, the present identification and characterization of ICEclc-JB2 provides insights into roles of MGE in bacterial niche adaptation and the evolution of catabolic pathways for biodegradation of xenobiotic compounds

    PIP5KIβ Selectively Modulates Apical Endocytosis in Polarized Renal Epithelial Cells

    Get PDF
    Localized synthesis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] at clathrin coated pits (CCPs) is crucial for the recruitment of adaptors and other components of the internalization machinery, as well as for regulating actin dynamics during endocytosis. PtdIns(4,5)P2 is synthesized from phosphatidylinositol 4-phosphate by any of three phosphatidylinositol 5-kinase type I (PIP5KI) isoforms (α, β or γ). PIP5KIβ localizes almost exclusively to the apical surface in polarized mouse cortical collecting duct cells, whereas the other isoforms have a less polarized membrane distribution. We therefore investigated the role of PIP5KI isoforms in endocytosis at the apical and basolateral domains. Endocytosis at the apical surface is known to occur more slowly than at the basolateral surface. Apical endocytosis was selectively stimulated by overexpression of PIP5KIβ whereas the other isoforms had no effect on either apical or basolateral internalization. We found no difference in the affinity for PtdIns(4,5)P2-containing liposomes of the PtdIns(4,5)P2 binding domains of epsin and Dab2, consistent with a generic effect of elevated PtdIns(4,5)P2 on apical endocytosis. Additionally, using apical total internal reflection fluorescence imaging and electron microscopy we found that cells overexpressing PIP5KIβ have fewer apical CCPs but more internalized coated structures than control cells, consistent with enhanced maturation of apical CCPs. Together, our results suggest that synthesis of PtdIns(4,5)P2 mediated by PIP5KIβ is rate limiting for apical but not basolateral endocytosis in polarized kidney cells. PtdIns(4,5)P2 may be required to overcome specific structural constraints that limit the efficiency of apical endocytosis. © 2013 Szalinski et al

    A cross-institutional analysis of the effects of broadening trainee professional development on research productivity

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Brandt, P. D., Sturzenegger Varvayanis, S., Baas, T., Bolgioni, A. F., Alder, J., Petrie, K. A., Dominguez, I., Brown, A. M., Stayart, C. A., Singh, H., Van Wart, A., Chow, C. S., Mathur, A., Schreiber, B. M., Fruman, D. A., Bowden, B., Wiesen, C. A., Golightly, Y. M., Holmquist, C. E., Arneman, D., Hall, J. D., Hyman, L. E., Gould, K. L., Chalkley, R., Brennwald, P. J., Layton, R. L. A cross-institutional analysis of the effects of broadening trainee professional development on research productivity. Plos Biology, 19(7), (2021): e3000956, https://doi.org/10.1371/journal.pbio.3000956.PhD-trained scientists are essential contributors to the workforce in diverse employment sectors that include academia, industry, government, and nonprofit organizations. Hence, best practices for training the future biomedical workforce are of national concern. Complementing coursework and laboratory research training, many institutions now offer professional training that enables career exploration and develops a broad set of skills critical to various career paths. The National Institutes of Health (NIH) funded academic institutions to design innovative programming to enable this professional development through a mechanism known as Broadening Experiences in Scientific Training (BEST). Programming at the NIH BEST awardee institutions included career panels, skill-building workshops, job search workshops, site visits, and internships. Because doctoral training is lengthy and requires focused attention on dissertation research, an initial concern was that students participating in additional complementary training activities might exhibit an increased time to degree or diminished research productivity. Metrics were analyzed from 10 NIH BEST awardee institutions to address this concern, using time to degree and publication records as measures of efficiency and productivity. Comparing doctoral students who participated to those who did not, results revealed that across these diverse academic institutions, there were no differences in time to degree or manuscript output. Our findings support the policy that doctoral students should participate in career and professional development opportunities that are intended to prepare them for a variety of diverse and important careers in the workforce.Funding sources included the Common Fund NIH Director’s Biomedical Research Workforce Innovation Broadening Experiences in Scientific Training (BEST) Award. The following institutional NIH BEST awards (alphabetical by institution) included: DP7OD020322 (Boston University; AFB, ID, BMS, LEH); DP7OD020316 (University of Chicago; CAS); DP7OD018425 (Cornell University; SSV); DP7OD018428 (Virginia Polytechnic Institute; AVW, BB); DP7OD020314 (Rutgers University; JA); DP7OD020315 (University of Rochester; TB); DP7OD018423 (Vanderbilt University; KAP, AMB, KLG, RC); DP7OD020321 (University of California, Irvine; HS, DAF); DP7OD020317 (University of North Carolina, Chapel Hill; PDB, PJB, RLL); DP7 OD018427 (Wayne State University; CSC, AM). National Institutes of Health (NIH) General Medical Sciences - Science of Science Policy Approach to Analyzing and Innovating the Biomedical Research Enterprise (SCISIPBIO) Award (GM-19-011) - 1R01GM140282-01 (University of North Carolina at Chapel Hill; RLL, PDB, PJB)

    The Future of Agent-Based Modeling

    Get PDF
    In this paper, I elaborate on the role of agent-based (AB) modeling for macroeconomic research. My main tenet is that the full potential of the AB approach has not been realized yet. This potential lies in the modular nature of the models, which is bought by abandoning the straitjacket of rational expectations and embracing an evolutionary perspective. I envisage the foundation of a Modular Macroeconomic Science, where new models with heterogeneous interacting agents, endowed with partial information and limited computational ability, can be created by recombining and extending existing models in a unified computational framework

    The Einstein Toolkit: A Community Computational Infrastructure for Relativistic Astrophysics

    Full text link
    We describe the Einstein Toolkit, a community-driven, freely accessible computational infrastructure intended for use in numerical relativity, relativistic astrophysics, and other applications. The Toolkit, developed by a collaboration involving researchers from multiple institutions around the world, combines a core set of components needed to simulate astrophysical objects such as black holes, compact objects, and collapsing stars, as well as a full suite of analysis tools. The Einstein Toolkit is currently based on the Cactus Framework for high-performance computing and the Carpet adaptive mesh refinement driver. It implements spacetime evolution via the BSSN evolution system and general-relativistic hydrodynamics in a finite-volume discretization. The toolkit is under continuous development and contains many new code components that have been publicly released for the first time and are described in this article. We discuss the motivation behind the release of the toolkit, the philosophy underlying its development, and the goals of the project. A summary of the implemented numerical techniques is included, as are results of numerical test covering a variety of sample astrophysical problems.Comment: 62 pages, 20 figure

    Investigating variation in replicability

    Get PDF
    Although replication is a central tenet of science, direct replications are rare in psychology. This research tested variation in the replicability of 13 classic and contemporary effects across 36 independent samples totaling 6,344 participants. In the aggregate, 10 effects replicated consistently. One effect – imagined contact reducing prejudice – showed weak support for replicability. And two effects – flag priming influencing conservatism and currency priming influencing system justification – did not replicate. We compared whether the conditions such as lab versus online or US versus international sample predicted effect magnitudes. By and large they did not. The results of this small sample of effects suggest that replicability is more dependent on the effect itself than on the sample and setting used to investigate the effect

    Worth the ‘EEfRT’? The Effort Expenditure for Rewards Task as an Objective Measure of Motivation and Anhedonia

    Get PDF
    Background: Of the putative psychopathological endophenotypes in major depressive disorder (MDD), the anhedonic subtype is particularly well supported. Anhedonia is generally assumed to reflect aberrant motivation and reward responsivity. However, research has been limited by a lack of objective measures of reward motivation. We present the Effort-Expenditure for Rewards Task (EEfRT or ‘‘effort’’), a novel behavioral paradigm as a means of exploring effort-based decision-making in humans. Using the EEfRT, we test the hypothesis that effort-based decision-making is related to trait anhedonia. Methods/Results: 61 undergraduate students participated in the experiment. Subjects completed self-report measures of mood and trait anhedonia, and completed the EEfRT. Across multiple analyses, we found a significant inverse relationship between anhedonia and willingness to expend effort for rewards. Conclusions: These findings suggest that anhedonia is specifically associated with decreased motivation for rewards, and provide initial validation for the EEfRT as a laboratory-based behavioral measure of reward motivation and effort-base
    • …
    corecore