14 research outputs found

    Ovarian cycling and reproductive state shape the vaginal microbiota in wild baboons

    Get PDF
    Background: The vaginal microbiome is an important site of bacterial-mammalian symbiosis. This symbiosis is currently best characterized for humans, where lactobacilli dominate the microbial community and may help defend women against infectious disease. However, lactobacilli do not dominate the vaginal microbiota of any other mammal studied to date, raising key questions about the forces that shape the vaginal microbiome in non-human mammals. Results: We used Illumina sequencing of the bacterial 16S rRNA gene to investigate variation in the taxonomic composition of the vaginal microbiota in 48 baboons (Papio cynocephalus), members of a well-studied wild population in Kenya. Similar to prior studies, we found that the baboon vaginal microbiota was not dominated by lactobacilli. Despite this difference, and similar to humans, reproductive state was the dominant predictor of baboon vaginal microbiota, with pregnancy, postpartum amenorrhea, and ovarian cycling explaining 18% of the variance in community composition. Furthermore, among cycling females, a striking 39% of variance in community composition was explained by ovarian cycle phase, with an especially distinctive microbial community around ovulation. Peri-ovulatory females exhibited the highest relative abundance of lactic acid-producing bacteria compared to any other phase, with a mean relative abundance of 44%. To a lesser extent, sexual behavior, especially a history of shared sexual partners, also predicted vaginal microbial similarity between baboons. Conclusions: Despite striking differences in their dominant microbes, both human and baboon vaginal microbiota exhibit profound changes in composition in response to reproductive state, ovarian cycle phase, and sexual behavior. We found major shifts in composition during ovulation, which may have implications for disease risk and conception success. These findings highlight the need for future studies to account for fine-scale differences in reproductive state, particularly differences between the various phases of the ovarian cycle. Overall, our work contributes to an emerging understanding of the forces that explain intra- and inter-individual variation in the mammalian vaginal microbiome, with particular emphasis on its role in host health and disease risk

    Genotypic and phenotypic analyses of a Pseudomonas aeruginosa chronic bronchiectasis isolate reveal differences from cystic fibrosis and laboratory strains

    Get PDF

    baboon_metadata_alpha_diversity

    No full text
    Metadata, number of reads, estimated sample coverage, and alpha diversity metrics (Shannon's diversity index and OTU richness) for each vaginal sample included in this study

    Data from: Ovarian cycling and reproductive state shape the vaginal microbiota in wild baboons

    No full text
    Background: The vaginal microbiome is an important site of bacterial-mammalian symbiosis. This symbiosis is currently best characterized for humans, where lactobacilli dominate the microbial community and may help defend women against infectious disease. However, lactobacilli do not dominate the vaginal microbiota of any other mammal studied to date, raising key questions about the forces that shape the vaginal microbiome in non-human mammals. Results: We used Illumina sequencing of the bacterial 16S rRNA gene to investigate variation in the taxonomic composition of the vaginal microbiota in 48 baboons (Papio cynocephalus), members of a well-studied wild population in Kenya. Similar to prior studies, we found that the baboon vaginal microbiota was not dominated by lactobacilli. Despite this difference, and similar to humans, reproductive state was the dominant predictor of baboon vaginal microbiota, with pregnancy, postpartum amenorrhea, and ovarian cycling explaining 18% of the variance in community composition. Furthermore, among cycling females, a striking 39% of variance in community composition was explained by ovarian cycle phase, with an especially distinctive microbial community around ovulation. Peri-ovulatory females exhibited the highest relative abundance of lactic acid-producing bacteria compared to any other phase, with a mean relative abundance of 44%. To a lesser extent, sexual behavior, especially a history of shared sexual partners, also predicted vaginal microbial similarity between baboons. Conclusions: Despite striking differences in their dominant microbes, both human and baboon vaginal microbiota exhibit profound changes in composition in response to reproductive state, ovarian cycle phase, and sexual behavior. We found major shifts in composition during ovulation, which may have implications for disease risk and conception success. These findings highlight the need for future studies to account for fine-scale differences in reproductive state, particularly differences between the various phases of the ovarian cycle. Overall, our work contributes to an emerging understanding of the forces that explain intra- and inter-individual variation in the mammalian vaginal microbiome, with particular emphasis on its role in host health and disease risk

    Microbial Community Dynamics during Acetate Biostimulation of RDX-Contaminated Groundwater

    No full text
    Biostimulation of groundwater microbial communities (e.g., with carbon sources) is a common approach to achieving in situ bioremediation of organic pollutants (e.g., explosives). We monitored a field-scale approach to remediate the explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) in an aquifer near the Iowa Army Ammunition Plant in Middletown, IA. The purpose of the study was to gain insight into the effect of biostimulation on the microbial community. Biostimulation with acetate led to the onset of RDX reduction at the site, which was most apparent in monitoring well MW309. Based on previous laboratory experiments, we hypothesized that RDX degradation and metabolite production would correspond to enrichment of one or more Fe­(III)-reducing bacterial species. Community DNA from MW309 was analyzed with 454 pyrosequencing and terminal restriction fragment length polymorphism. Production of RDX metabolites corresponded to a microbial community shift from primarily Fe­(III)-reducing Betaproteobacteria to a community dominated by Fe­(III)-reducing Deltaproteobacteria (Geobacteraceae in particular) and Bacteroidetes taxa. This data provides a firsthand field-scale microbial ecology context to in situ RDX bioremediation using modern sequencing techniques that will inform future biostimulation applications
    corecore