1,726 research outputs found
Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops
We provide evidence in favor of the conjectured duality between color and
kinematics for the case of nonsupersymmetric pure Yang-Mills amplitudes by
constructing a form of the one-loop four-point amplitude of this theory that
makes the duality manifest. Our construction is valid in any dimension. We also
describe a duality-satisfying representation for the two-loop four-point
amplitude with identical four-dimensional external helicities. We use these
results to obtain corresponding gravity integrands for a theory containing a
graviton, dilaton, and antisymmetric tensor, simply by replacing color factors
with specified diagram numerators. Using this, we give explicit forms of
ultraviolet divergences at one loop in four, six, and eight dimensions, and at
two loops in four dimensions.Comment: 35 page, 10 figures, REVTex, ancillary mathematica file containing
one-loop diagram numerators, latest version includes updated references,
corrected two-loop numerators and various clarification
Evorus: A Crowd-powered Conversational Assistant Built to Automate Itself Over Time
Crowd-powered conversational assistants have been shown to be more robust
than automated systems, but do so at the cost of higher response latency and
monetary costs. A promising direction is to combine the two approaches for high
quality, low latency, and low cost solutions. In this paper, we introduce
Evorus, a crowd-powered conversational assistant built to automate itself over
time by (i) allowing new chatbots to be easily integrated to automate more
scenarios, (ii) reusing prior crowd answers, and (iii) learning to
automatically approve response candidates. Our 5-month-long deployment with 80
participants and 281 conversations shows that Evorus can automate itself
without compromising conversation quality. Crowd-AI architectures have long
been proposed as a way to reduce cost and latency for crowd-powered systems;
Evorus demonstrates how automation can be introduced successfully in a deployed
system. Its architecture allows future researchers to make further innovation
on the underlying automated components in the context of a deployed open domain
dialog system.Comment: 10 pages. To appear in the Proceedings of the Conference on Human
Factors in Computing Systems 2018 (CHI'18
Hexatic-Herringbone Coupling at the Hexatic Transition in Smectic Liquid Crystals: 4- Renormalization Group Calculations Revisited
Simple symmetry considerations would suggest that the transition from the
smectic-A phase to the long-range bond orientationally ordered hexatic
smectic-B phase should belong to the XY universality class. However, a number
of experimental studies have constantly reported over the past twenty years
"novel" critical behavior with non-XY critical exponents for this transition.
Bruinsma and Aeppli argued in Physical Review Letters {\bf 48}, 1625 (1982),
using a renormalization-group calculation, that short-range
molecular herringbone correlations coupled to the hexatic ordering drive this
transition first order via thermal fluctuations, and that the critical behavior
observed in real systems is controlled by a `nearby' tricritical point. We have
revisited the model of Bruinsma and Aeppli and present here the results of our
study. We have found two nontrivial strongly-coupled herringbone-hexatic fixed
points apparently missed by those authors. Yet, those two new nontrivial
fixed-points are unstable, and we obtain the same final conclusion as the one
reached by Bruinsma and Aeppli, namely that of a fluctuation-driven first order
transition. We also discuss the effect of local two-fold distortion of the bond
order as a possible missing order parameter in the Hamiltonian.Comment: 1 B/W eps figure included. Submitted to Physical Review E. Contact:
[email protected]
High-Resolution Labeling and Functional Manipulation of Specific Neuron Types in Mouse Brain by Cre-Activated Viral Gene Expression
We describe a method that combines Cre-recombinase knockin mice and viral-mediated gene transfer to genetically label and functionally manipulate specific neuron types in the mouse brain. We engineered adeno-associated viruses (AAVs) that express GFP, dsRedExpress, or channelrhodopsin (ChR2) upon Cre/loxP recombination-mediated removal of a transcription-translation STOP cassette. Fluorescent labeling was sufficient to visualize neuronal structures with synaptic resolution in vivo, and ChR2 expression allowed light activation of neuronal spiking. The structural dynamics of a specific class of neocortical neuron, the parvalbumin-containing (Pv) fast-spiking GABAergic interneuron, was monitored over the course of a week. We found that although the majority of Pv axonal boutons were stable in young adults, bouton additions and subtractions on axonal shafts were readily observed at a rate of 10.10% and 9.47%, respectively, over 7 days. Our results indicate that Pv inhibitory circuits maintain the potential for structural re-wiring in post-adolescent cortex. With the generation of an increasing number of Cre knockin mice and because viral transfection can be delivered to defined brain regions at defined developmental stages, this strategy represents a general method to systematically visualize the structure and manipulate the function of different cell types in the mouse brain
Qualification of single use in-line sensors for use in continuous bioprocessing
The requirements for batch versus continuous processing will be compared along the lines of the design attributes of single use sensors for pressure, temperature, conductivity, and UV absorbance and also performance over months of continuous operation. These sensors are applicable in both upstream and downsteam processing starting with pressure monitoring on single use bioreactors, sensors required for perfusion process monitoring followed by monitoring of continuous purification processes. Dissection of the materials of the sensors and their physical nature to withstand liquid exposure of up to 90 days versus (versus shorter more discrete batch processes of less than one day) will be examined on the core material basis. With single use sensors, calibration can often not be done at the time of use because of the closed nature of the bioprocess system. How the both the sensors and their corresponding monitors can meet the requirement of “no calibration required” at the point of use will be presented which is an important aspect in single use systems for continuous bioprocessing. In addition to examining impact of time and type of exposure of the sensor materials, during a continuous process of up to 90 days, the susceptibility to sensor measurement drift / change in calibration over time will be examined. Finally, during continuous processing, it is often imperative that a process can be continuously controlled and data can be logged and trended 24/7. Therefore, interface of the sensors to higher level control systems and to data historians is important and options will be examined to accomplish this for different plant architectures
New insights into the classification and nomenclature of cortical GABAergic interneurons.
A systematic classification and accepted nomenclature of neuron types is much needed but is currently lacking. This article describes a possible taxonomical solution for classifying GABAergic interneurons of the cerebral cortex based on a novel, web-based interactive system that allows experts to classify neurons with pre-determined criteria. Using Bayesian analysis and clustering algorithms on the resulting data, we investigated the suitability of several anatomical terms and neuron names for cortical GABAergic interneurons. Moreover, we show that supervised classification models could automatically categorize interneurons in agreement with experts' assignments. These results demonstrate a practical and objective approach to the naming, characterization and classification of neurons based on community consensus
- …
