85 research outputs found

    Negative compressibility

    Get PDF
    Rearch financed by the Malta Council for Science and Technology and CHISMACOMB (an EU FP6 STREP project).Structures made up from bi-material elements which can exhibit negative properties, in particular negative compressibility (negative bulk modulus, i.e. expand in size when the external pressure is increased and shrink when the external pressure is decreased) are proposed. This anomalous behaviour is confirmed through finite element modelling.peer-reviewe

    Auxetic behaviour from connected different-sized squares and rectangles

    Get PDF
    Auxetic materials exhibit the unusual property of becoming fatter when uniaxially stretched and thinner when uniaxially compressed (i.e. they exhibit a negative Poisson ratio; NPR), a property that may result in various enhanced properties. The NPR is the result of the manner in which particular geometric features in the micro- or nanostructure of the materials deform when they are subjected to uniaxial loads. Here, we propose and discuss a new model made from different-sized rigid rectangles, which rotate relative to each other. This new model has the advantage over existing models that it can be used to describe the properties of very different systems ranging from silicates and zeolites to liquid-crystalline polymers. We show that such systems can exhibit scale-independent auxetic behaviour for stretching in particular directions, with Poisson’s ratios being dependent on the shape and relative size of different rectangles in the model and the angle between them.peer-reviewe

    Negative thermal expansion

    Get PDF
    Materials with a negative thermal expansion coefficient contract when heated and expand when cooled. This paper reviews mechanisms of how this unusual property can be achieved at the molecular and macroscopic level. Some applications of this unusual property are also discussed.peer-reviewe

    A novel mechanism for generating auxetic behaviour in reticulated foams : missing rib foam model

    Get PDF
    Foams have previously been fabricated with a negative Poisson's ratio (termed auxetic foams). A novel model is proposed to explain this and to describe the strain-dependent Poisson's function behaviour of honeycomb and foam materials. The model is two-dimensional and is based upon the observation of broken cell ribs in foams processed via the compression and heating technique usually employed to convert conventional foams to auxetic behaviour. The model has two forms: the “intact” form is a network of ribs with biaxial symmetry, and the “auxetic” form is a similar network but with a proportion of cell ribs removed. The model output is compared with that of an existing two-dimensional model and experimental data, and is found to be superior in predicting the Poisson's function and marginally better at predicting the stress–strain behaviour of the experimental data than the existing model, using realistic values for geometric parameters.peer-reviewe

    A system with adjustable positive or negative thermal expansion

    Get PDF
    We analyse the anisotropic thermal expansion properties of a two-dimensional structurally rigid construct made from rods of different materials connected together through hinges to form triangular units. In particular, we show that this system may be made to exhibit negative thermal expansion coefficients along certain directions or thermal expansion coefficients that are even more positive than any of the component materials. The end product is a multifunctional system with tunable thermal properties that can be tailor-made for particular practical applications.peer-reviewe

    On the mechanical properties and auxetic potential of various organic networked polymers

    Get PDF
    We simulate and analyse three types of two-dimensional networked polymers which have been predicted to exhibit on-axis auxetic behaviour (negative Poisson's ratio), namely (1) polyphenylacetylene networks that behave like flexing re-entrant honeycombs, commonly referred to as ‘reflexynes’, (2) polyphenylacetylene networks that mimic the behaviour of rotating triangles, commonly referred to as ‘polytriangles’ and (3) networked polymers built from calix[4]arene units. More specifically, we compute and compare their in-plane off-axis mechanical behaviour, in particular their off-axis Poisson's ratios and show that in some cases, the sign and magnitude of the Poisson's ratio are dependent on the direction of loading. We propose two functions that can provide a measure for the extent of auxeticity for such anisotropic materials and show that the polytriangles are predicted as the most auxetic when compared with the other networks with the reflexyne re-entrant networks being the least auxetic.peer-reviewe

    Mathematical modeling of auxetic systems : bridging the gap between analytical models and observation

    Get PDF
    The Poisson’s ratio, a property which quantifies the changes in thickness when a material is stretched and compressed, can be determined as the negative of the transverse strain over the applied strain. In the scientific literature, there are various ways how strain may be defined and the actual definition used could result in a different Poisson’s ratio being computed. This paper will look in more detail at this by comparing the more commonly used forms of strain and the Poisson’s ratio that is computable from them. More specifically, an attempt is made to assess through examples on the usefulness of the various formulations to properly describe what can actually be observed, thus providing a clearer picture of which form of Poisson’s ratio should be used in analytical modelling.peer-reviewe

    A novel mechanical metamaterial exhibiting auxetic behavior and negative compressibility

    Get PDF
    Auxetics (negative Poisson’s ratio) and materials with negative linear compressibility (NLC) exhibit the anomalous mechanical properties of getting wider rather than thinner when stretched and expanding in at least one direction under hydrostatic pressure, respectively. A novel mechanism—termed the ‘triangular elongation mechanism’—leading to such anomalous behavior is presented and discussed through an analytical model. Amongst other things, it is shown that this novel mechanism, when combined with the well-known ‘rotating squares’ model, can generate giant negative Poisson’s ratios when the system is stretched.peer-reviewe

    Smart hexagonal truss systems exhibiting negative compressibility through constrained angle stretching

    Get PDF
    The support of the Malta Council of Science and Technology through their national R&I programme as well as the support of the University of Malta is gratefully acknowledged.Negative compressibility is the ability to expand in at least one dimension rather than shrinking upon the application of an externally applied hydrostatic pressure. It is shown that, contrary to current perception, negative linear compressibility may be obtained from re-entrant hexagonal truss systems of specific geometric features which deform through non-equal changes in the lengths of the cell walls when deforming through a constrained angle stretching rather than other modes of deformation (such as flexure or hinging, modes of deformation that also lead to auxetic behaviour in honeycombs). Negative compressibility is predicted in the vertical direction for particular re-entrant geometries of this smart hexagonal truss system when the vertical ribs are much stiffer than the inclined ribs.peer-reviewe

    The 5'-3' exoribonuclease Pacman (Xrn1) regulates expression of the heat shock protein Hsp67Bc and the microRNA miR-277-3p in Drosophila wing imaginal discs

    Get PDF
    Pacman/Xrn1 is a highly conserved exoribonuclease known to play a critical role in gene regulatory events such as control of mRNA stability, RNA interference and regulation via miRNAs. Although Pacman has been well studied in Drosophila tissue culture cells, the biologically relevant cellular pathways controlled by Pacman in natural tissues are unknown. This study shows that a hypomorphic mutation in pacman (pcm5) results in smaller wing imaginal discs. These tissues, found in the larva, are known to grow and differentiate to form wing and thorax structures in the adult fly. Using microarray analysis, followed by quantitative RT-PCR, we show that eight mRNAs were increased in level by >2 fold in the pcm5 mutant wing discs compared to the control. The levels of pre mRNAs were tested for five of these mRNAs; four did not increase in the pcm5 mutant, showing that they are regulated at the post-transcriptional level and therefore could be directly affected by Pacman. These transcripts include one that encodes the heat-shock protein Hsp67Bc, which is upregulated 11.9-fold at the post-transcriptional level and 2.3-fold at the protein level. One miRNA, miR-277-3p, is 5.6-fold downregulated at the post-transcriptional level in mutant discs, suggesting that Pacman affects its processing in this tissue. Together, these data show that a relatively small number of mRNAs and miRNAs substantially change in abundance in pacman mutant wing imaginal discs. Since Hsp67Bc is known to regulate autophagy and protein synthesis, it is possible that Pacman may control the growth of wing imaginal discs by regulating these processes
    • 

    corecore