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We analyse the anisotropic thermal expansion properties of a two-dimensional
structurally rigid construct made from rods of different materials connected together
through hinges to form triangular units. In particular, we show that this system may be
made to exhibit negative thermal expansion coefficients along certain directions or
thermal expansion coefficients that are even more positive than any of the component
materials. The end product is a multifunctional system with tunable thermal properties
that can be tailor-made for particular practical applications.
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1. Introduction

The extent to which materials and structures deform when subjected to changes in
temperature is a subject that has been studied for many years. Scientists and
engineers must constantly account for temperature effects in their designs, as their
neglect could result in various problems (Taylor 1998). Considerable advances are
being made in the design, study and manufacture of materials and structures
having very particular coefficients of thermal expansion, including materials and
structures exhibiting negative coefficients of thermal expansion, i.e. materials
which contract when heated (Lakes 1996; Mary et al. 1996; Sigmund & Torquato
1996, 1997; Taylor 1998; Evans 1999; Milton 2002; Sleight 2002; Vandeperre et al.
2002; Vandeperre & Clegg 2003; Barrera et al. 2005; Smith et al. 2005) and in
recent years, various composites having predetermined coefficients of thermal
expansion have been developed and are already in use in small-scale or high-tech
applications that require a good match of the thermal properties (e.g. in teeth
fillings (Versluis et al. 1996) or electronic applications (Holzer & Dunand 1997)).
Nevertheless, there is still the need to develop simpler and cheaper methods for
achieving the same effect on any scale, particularly on a large scale.

Here, we discuss the properties of a simple structure (figure 1) which can be
constructed at any length scale and exhibits the very interesting property that its
thermal expansion coefficient can be controlled and adjusted to any pre-desired

Proc. R. Soc. A (2007) 463, 1585–1596

doi:10.1098/rspa.2007.1841

Published online 28 March 2007

Electronic supplementary material is available at http://dx.doi.org/10.1098/rspa.2007.1841 or via
http://www.journals.royalsoc.ac.uk.

*Author for correspondence (joseph.grima@um.edu.mt).

Received 12 January 2007
Accepted 27 February 2007 1585 This journal is q 2007 The Royal Society

 on March 12, 2014rspa.royalsocietypublishing.orgDownloaded from brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/83022456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1098/rspa.2007.1841
http://www.journals.royalsoc.ac.uk
http://rspa.royalsocietypublishing.org/
http://rspa.royalsocietypublishing.org/
https://www.researchgate.net/publication/260259846_Negative_Thermal_Expansion?el=1_x_8&enrichId=rgreq-49b353368aa7ffa804f78f3f1907d31b-XXX&enrichSource=Y292ZXJQYWdlOzI1Mjc3MjQ0NztBUzoyOTM4NTA2MzY2Njg5MjhAMTQ0NzA3MDg1OTExNw==
https://www.researchgate.net/publication/30410898_Negative_Thermal_Expansion_Materials?el=1_x_8&enrichId=rgreq-49b353368aa7ffa804f78f3f1907d31b-XXX&enrichSource=Y292ZXJQYWdlOzI1Mjc3MjQ0NztBUzoyOTM4NTA2MzY2Njg5MjhAMTQ0NzA3MDg1OTExNw==
https://www.researchgate.net/publication/231771682_Negative_Thermal_Expansion?el=1_x_8&enrichId=rgreq-49b353368aa7ffa804f78f3f1907d31b-XXX&enrichSource=Y292ZXJQYWdlOzI1Mjc3MjQ0NztBUzoyOTM4NTA2MzY2Njg5MjhAMTQ0NzA3MDg1OTExNw==
https://www.researchgate.net/publication/235623918_Application_of_negative_thermal_expansion_to_optical_fibres?el=1_x_8&enrichId=rgreq-49b353368aa7ffa804f78f3f1907d31b-XXX&enrichSource=Y292ZXJQYWdlOzI1Mjc3MjQ0NztBUzoyOTM4NTA2MzY2Njg5MjhAMTQ0NzA3MDg1OTExNw==
https://www.researchgate.net/publication/235623918_Application_of_negative_thermal_expansion_to_optical_fibres?el=1_x_8&enrichId=rgreq-49b353368aa7ffa804f78f3f1907d31b-XXX&enrichSource=Y292ZXJQYWdlOzI1Mjc3MjQ0NztBUzoyOTM4NTA2MzY2Njg5MjhAMTQ0NzA3MDg1OTExNw==
https://www.researchgate.net/publication/235410233_The_Theory_of_Composites?el=1_x_8&enrichId=rgreq-49b353368aa7ffa804f78f3f1907d31b-XXX&enrichSource=Y292ZXJQYWdlOzI1Mjc3MjQ0NztBUzoyOTM4NTA2MzY2Njg5MjhAMTQ0NzA3MDg1OTExNw==
https://www.researchgate.net/publication/235623909_Tailoring_strains_through_microstructural_design?el=1_x_8&enrichId=rgreq-49b353368aa7ffa804f78f3f1907d31b-XXX&enrichSource=Y292ZXJQYWdlOzI1Mjc3MjQ0NztBUzoyOTM4NTA2MzY2Njg5MjhAMTQ0NzA3MDg1OTExNw==
https://www.researchgate.net/publication/224435654_Composites_with_Extremal_Thermal_Expansion_Coefficients?el=1_x_8&enrichId=rgreq-49b353368aa7ffa804f78f3f1907d31b-XXX&enrichSource=Y292ZXJQYWdlOzI1Mjc3MjQ0NztBUzoyOTM4NTA2MzY2Njg5MjhAMTQ0NzA3MDg1OTExNw==
https://www.researchgate.net/publication/224435654_Composites_with_Extremal_Thermal_Expansion_Coefficients?el=1_x_8&enrichId=rgreq-49b353368aa7ffa804f78f3f1907d31b-XXX&enrichSource=Y292ZXJQYWdlOzI1Mjc3MjQ0NztBUzoyOTM4NTA2MzY2Njg5MjhAMTQ0NzA3MDg1OTExNw==
https://www.researchgate.net/publication/14047729_Thermal_expansion_coefficient_of_dental_composites_measure_with_strain_gauges?el=1_x_8&enrichId=rgreq-49b353368aa7ffa804f78f3f1907d31b-XXX&enrichSource=Y292ZXJQYWdlOzI1Mjc3MjQ0NztBUzoyOTM4NTA2MzY2Njg5MjhAMTQ0NzA3MDg1OTExNw==


value. As illustrated in figure 1, in its most general case, this structure can be
described as a two-dimensional periodic network made from three sets of rods of
different materials (materials 1–3).

2. Model for the thermal expansion properties at a temperature T0

We will assume that rods of the same materials are aligned parallel and
equidistant from each other in such a way that the three sets of rods intersect
through a ‘pin joint’ with each other to form triangles with side lengths l1, l2 and
l3 (where lm corresponds to the length of the side made from material m) as
shown in figure 1. It has recently been shown that triangles having one side made
from a different material than the other two sides can be made to exhibit
negative thermal expansion (Vandeperre et al. 2002; Vandeperre & Clegg 2003;
Smith et al. 2005) and as we will show, the presence of these triangular units in
our construct, potentially having all three sides with different lengths lm and
made from different materials, is the key requirement for enabling full control of
the thermal expansion properties.

The geometry of our construct may be described in terms of a parallelo-
grammic unit cell that contains two triangles. If the structure is aligned in space
in such a way that the rods of material 2 are always parallel to the Ox2 direction,
then the unit cell will have unit cell vectors aZ(X11, X12) and bZ(0, X22), where
X11, X22 and X12 are given by

X11 Z
1

2l 2
½ðl 1C l 2C l 3ÞðKl 1C l 2C l 3Þðl 1K l 2 C l 3Þðl 1C l 2K l 3Þ�1=2; ð2:1Þ

X22 Z l 2; ð2:2Þ
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Figure 1. A two-dimensional lattice made of rods, intersecting at pin joints. The rods in each direction
are made of a different material. The unit cell of the lattice is shown by the dashed parallelogram.
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Taking the most general case in which the materials have different coefficients of
thermal expansion aSm, when the structure is subjected to a change in temperature
dT, the lengths lm will vary by different amounts defined by dlmZlmaSmdT. These
changes in lm owing to a temperature variation will result in changes in size and
shape of the macrostructure which may be quantified through the symmetric
tensor aij (i, jZ1, 2) that describes the anisotropic thermal expansion of a two-
dimensional system (Nye 1957). The values of aij are defined as

3ij ZaijdT ; ð2:4Þ
where 311 and 322 are the axial strains in the Ox1 and Ox2 directions, respectively,
while 312 and 321 are equal to half the shear strain g. These strains are given by

311 Z
dX11

X11

; 322 Z
dX22

X22

; gZ 2312 Z 2321 Z
1

X11

dX12K
X12

X22

� �
dX22

� �
: ð2:5Þ

Thus, since

dXij Z
X3
mZ1

vXij

vlm
dlm Z

X3
mZ1

vXij

vlm
aSmlmdT ði; j Z 1; 2Þ; ð2:6Þ

from equations (2.1)–(2.6), the elements of the thermal expansion tensor aij can
be simplified to

a11 Z
311

dT
Z l 21 l 22C l 23

� �
aS1C l 22 l 21 C l 23

� �
aS2C l 23 l 21 C l 22

� �
aS3

� 	 1

2l 22X
2
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K 2l 22X
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� 	 1

2l 22X
2
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; ð2:7Þ

a22 Z
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ZaS2; ð2:8Þ

and

a12 Za21 Z
312

dT
Z

1

2

g

dT
Z

l 21ðaS1KaS2ÞKl 23ðaS3KaS2Þ
2X11l 2

: ð2:9Þ

In addition, using standard axis transformation techniques (Nye 1957), we
may also obtain a(z), the coefficient of thermal expansion in a direction
subtending an angle z to the Ox1,

aðzÞZa11cos
2ðzÞC2a12sinðzÞcosðzÞCa22sin

2ðzÞ: ð2:10Þ

Furthermore, using the standard theory of principal strains (Gere 2001), we
can identify the maximum and minimum thermal expansion coefficients afforded
by the structure, which are given by

aðzÞmax=min Z
a11Ca22

2
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11Ka22

2


 �2
Ca2

12

r
; ð2:11Þ

that occur at mutually orthogonal directions which are oriented at an angle of
zmax/min to the Oxi axes where zmax/min is given by

zmax=min Z
1

2
tanK1 2a12

a11Ka22

� �
: ð2:12Þ
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3. Results and discussion

Equations (2.7)–(2.10) suggest that, in general, the coefficient of thermal
expansion a(z) will depend on the following:

(i) the geometry of the system (i.e. the relative magnitudes of lm),
(ii) the properties of the materials (i.e. the magnitudes of aSm), and
(iii) the direction of measurement (i.e. the angle z).

These equations also suggest that the change in shape and size of the
macrostructure owing to a change in temperature may result in negative thermal
expansion (i.e. thermal contraction) in certain directions. For example, assuming
that the macrostructure is constructed using conventional materials having positive
but different coefficients of thermal expansion, the structure will contract in
the Ox1 direction when heated (i.e. a11 will assume negative values) if 2l 22X

2
11aS2C

l 41aS1C l 42aS2C l 43aS3O l 21 l 22C l 23
� �

aS1C l 22 l 21C l 23
� �

aS2C l 23 l 21C l 22
� �

aS3. Equations
(2.11) and (2.12) suggest the directions where the structure exhibits maximum/
minimum thermal expansion coefficients and that the signs/magnitudes of these
coefficients depend on the magnitudes of aij (equations (2.7)–(2.9)), which in turn
depend on the relative lengths and coefficients of thermal expansion of the rods. All
these suggest that the thermal expansion properties may be completely controlled
through the choice of the parameters lm and aSm, and as a consequence, by careful
choice of these parameters, one may engineer macrostructures that exhibit
predetermined thermal expansion properties, thus enabling the construction of
systems which are tailor-made for particular practical applications.

These equations also show that, in general, a12 is not zero and hence the
macrostructure may shear when subjected to a change in temperature. The
condition for the structure not to shear is l 21ðaS1KaS2ÞZ l 23ðaS3KaS2Þ, and this
can be satisfied by the trivial solution where all aSm have the same value, aS. In
fact, under such conditions, the macrostructure will be isotropic in-plane, with
a(z)ZaS, and upon heating the macrostructure will expand while maintaining its
aspect ratio in accordance with common expectation. Another system that will
not shear is the special case when aS1ZaS3 and the triangles are isosceles with
l1Zl3 as discussed further on.

In an attempt to understand more clearly the potential of this macrostructure
as a system with variable thermal expansion and, in particular, as a system that
can exhibit thermal contraction, we shall consider the following five special cases.

I. Equilateral triangles with aS1ZaS3saS2.
II. Equilateral triangles with aS1ZaS2saS3.
III. Equilateral triangles with aS1saS2saS3saS1.
IV. Isosceles triangles with l1Zl3sl2 and aS1ZaS3saS2.
V. More general cases.

(a ) Case I: special case when the triangles are equilateral and aS1ZaS3saS2

Let us first consider the particular case where triangles are equilateral (having
lmZl ) at the temperature of interest and the intrinsic coefficients of thermal
expansion are such that aS1ZaS3saS2 (i.e. the rods aligned parallel to the Ox2
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direction have a thermal expansion coefficient that is different from the other two
sets of rods).

In such a case, as illustrated in figure 2, the thermal expansion coefficients of
the macrostructure will depend on the direction of measurement (i.e. it is
anisotropic) and the particular values of aS1 and aS2. (As stated earlier, in the
special case when aS1ZaS2ZaS3, the system will become isotropic where
a(z)ZaS1ZaS2ZaS3 as expected from a system made from a single isotropic
material. In this respect, we note that isotropic behaviour can only be achieved
when all rods are made from the same material.)

More specifically, when lmZl and aS1ZaS3saS2, equations (2.7)–(2.12) for the
on-axis and off-axis values of the coefficient of thermal expansion for this system
simplify to

a11 Z
1

3
ð4aS1KaS2Þ; ð3:1Þ

a22 ZaS2; ð3:2Þ

a12 Z 0; ð3:3Þ

aðzÞZa11cos
2ðzÞCa22sin

2ðzÞ; ð3:4Þ

aðzÞmax=min Z
2aS1CaS2

3
G

2ðaS1KaS2Þ
3

Z
4aS1KaS2

3
; aS2; ð3:5Þ

zmax=min Z
1

2
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� �
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Figure 2. (a,b) Typical plots of a(z), the thermal expansion of the structure at an angle z to the Ox1
axes, against z for systems where the triangles are equilateral at the temperature of interest with one
side having a different thermal expansion coefficient than the other two (aS1ZaS3saS2, case I) .

1589A system with adjustable thermal expansion

Proc. R. Soc. A (2007)

 on March 12, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/
http://rspa.royalsocietypublishing.org/


Equation (3.3) suggests that this systemwill not shearwhenheated,while equation
(3.5) indicates that the maximum/minimum thermal expansion will always occur
on-axis. Furthermore, from these equations, we can deduce the following.

(i) When aS1ZaS3!aS2, minimum thermal expansion is exhibited in the Ox1
direction. This becomes negative when 4aS1Z4aS3!aS2. Themagnitude of the
negative thermal expansion can be increased by increasing aS2 relative to aS1Z
aS3 (figure 2a). In addition, when aS1ZaS3!aS2, the thermal expansion
coefficient in the Ox2 direction a22ZaS2 is the maximum (most positive)
thermal expansion coefficient exhibited by the system.

(ii) When aS1ZaS3OaS2, maximum thermal expansion is exhibited in the Ox1
direction where the maximum thermal expansion is greater than any of the
individual aSms (figure 2b). In addition, in this case, where aS1ZaS3OaS2, the
thermal expansion coefficient in the Ox2 direction a22ZaS2 is the minimum
(least positive) thermal expansion coefficient exhibited by the system.

All this is consistent with the work done by Smith et al. (2005). An animation
illustrating this type of behaviour is supplied in the electronic supplementary
material.

(b ) Case II: special case when the triangles are equilateral and aS1ZaS2saS3

It is important to note that the system in case I exhibits zero a12 and its
maximum/minimum thermal expansion occurs on-axis due to the fact that the
system is aligned in such a way that the rods which have a different thermal
expansion from the other two sets (i.e. the rods of material 2) are set to be aligned
parallel to the Ox2 direction (i.e. the Ox1 and Ox2 directions correspond to lines of
symmetry). In fact, when this is not the case, for example, if the thermal expansion
coefficients of the rods were such that aS1ZaS2saS3, then equations (2.7)–(2.12)
simplify to

a11 Z
1

3
ðaS1C2aS3Þ; ð3:7Þ

a22 ZaS1; ð3:8Þ

a12 Z
aS1KaS3ffiffiffi

3
p ; ð3:9Þ

aðzÞZa11cos
2ðzÞC2a12sinðzÞcosðzÞCa22sin

2ðzÞ; ð3:10Þ

aðzÞmax=min Z
2aS1CaS3

3
G

2

3
ðaS1KaS3ÞZ

4aS1KaS3

3
; aS3; ð3:11Þ

zmax=min Z
1

2
tanK1 2a12

a11Ka22

� �
Z

1

2
tanK1ðK

ffiffiffi
3

p
ÞZK308: ð3:12Þ

Equation (3.9) suggests that, in this case, the shear component is not zero and
the extent of shear deformation when the structure experiences a temperature
change is proportional to the differences between the thermal expansion
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coefficients of rods of materials 1 and 3 (assuming that the rods of material 2
remain aligned with the Ox2 direction). This can be attributed to the fact that
the Ox1 direction does not correspond to a line of symmetry as was the case in
case I. In addition, from equations (3.7) and (3.8) we may deduce that for this
system, the on-axis thermal expansion coefficients will never be negative.
However, negative thermal expansion is still possible and, as illustrated from
equation (3.11), the directions of maximum/minimum thermal expansion
coefficients are at K308 to the Ox1 and Ox2 axes, i.e. in directions that are
normal and orthogonal to the rods which have a different thermal expansion
from the other two sets (i.e. the rods made from material 3). In fact, if aS3O
4aS1Z4aS2, then the system will exhibit negative thermal expansion which is at
a maximum at K308 to the Ox2 direction, i.e. a direction which is orthogonal to
the rod of material 3. Note that these conclusions can also be reached by
considering that the system in case II is the equivalent of the system in case I
after this is rotated by 608. In fact, the plots of a(z) for this system (not shown)
will be equivalent to the ones in figure 2 with the difference that they would be
608 out of phase. A similar discussion can be made for the system containing
equilateral triangles where aS2ZaS3saS1.

(c ) Case III: special case when the triangles are equilateral and aS1saS2saS3saS1

If we were to consider a more general scenario where the triangles are still
equilateral at the temperature of interest but the three sides have different thermal
expansion coefficients (i.e. aS1saS2saS3saS1), then equations (2.7)–(2.12) will
simplify to

a11 Z
1

3
ð2aS1KaS2C2aS3Þ; ð3:13Þ

a22 ZaS2; ð3:14Þ

a12 Z
aS1KaS3ffiffiffi

3
p ; ð3:15Þ

aðzÞZa11cos
2ðzÞC2a12sinðzÞcosðzÞCa22sin

2ðzÞ; ð3:16Þ

aðzÞmax=min Z
aS1 CaS2CaS3

3
G

1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaS1K2aS2CaS3Þ2 C3ðaS1KaS3Þ2

q
; ð3:17Þ

zmax=min Z
1

2
tanK1

ffiffiffi
3

p
ðaS1KaS3Þ

aS1CaS3K2aS2

� �
: ð3:18Þ

These equations suggest that as in case II, this structure will shear when it
experiences a change in temperature where the extent of shear deformation is
proportional to the differences between the thermal expansion coefficients of
materials 1 and 3 (assuming that the system is still aligned in such a way that the
rods of material 2 are always parallel to the Ox2 direction). This shearing can once
again be attributed to the fact that the Ox1 direction does not correspond to a line
of symmetry.
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In addition, we note that the system is still capable of exhibiting negative thermal
expansion, even on-axis. For example, for negative thermal expansion in the Ox1
direction, we require that aS2O2aS1C2aS3. However, in this case, minimum/
maximum thermal expansion coefficients will not be exhibited on-axis and in fact the
directions of maximum/minimum thermal expansion a(z) will occur in the directions
which are orthogonal to each other and at an angle of zmax/min to theOxi axis, where
zmax/min is given by equation (3.17). Typical plots of a(z) for various combinations of
the intrinsic thermal expansion coefficients are shown infigure 3.Theseplots highlight
the increased anisotropy (when compared with case I, see figure 2) in the thermal
expansion properties that results from using three materials having different thermal
expansion coefficients rather than just two.

(d ) Case IV: special case when the triangles are isosceles with l1Zl3sl2 and
aS1ZaS3saS2

For a given set of rods with aS1ZaS3saS2, one can obtain a greater range of
thermal expansion coefficients than those in case I by relaxing the condition that all
the lengths lm are initially equal. To investigate this systematically, we will now
consider the special case when the triangles are isosceles rather than equilateral with
l1Zl3sl2 and aS1ZaS3saS2. In such cases, equations (2.7)–(2.12) will simplify to
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Figure 3. Typical plots of a(z), the thermal expansion of the structure at an angle z to the Ox1
axes, against z for systems where the triangles are equilateral at the temperature of interest with
all three sides having different thermal expansion coefficients from each other (case III ).
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From these equations, one may note that although this system shares
various properties with the simpler system in case I where the triangles are
equilateral (e.g. system does not shear and maximum/minimum thermal
expansion occurs on-axis), in the current case, more extreme properties can
be observed. In particular,

(i) when aS1ZaS3!aS2, minimum thermal expansion is exhibited in the Ox1
direction (as was the case for equilateral triangles), where the minimum value
of the thermal expansion may be lowered by (a) increasing the value of aS2
relative to aS1ZaS3 (as was the case for the equilateral triangles), or (b)
increasing l2 relative to l1Zl3. In fact, negative thermal expansion in the Ox1
direction can now be obtained when aS2O4ðl 21=l 22ÞaS1 rather than aS2O4aS1,
as was the case for equilateral triangles. This is very significant, particularly
from a manufacturing point of view, since as the ratio l1/l2 becomes smaller,
it becomes possible for a structure to exhibit negative thermal expansion even
if it is made from materials which have different though comparable values of
aSm. Furthermore, we note that very large negative thermal expansion
coefficients can be exhibited in the limit when l2/(l1Cl3) and

(ii) when aS1ZaS3OaS2, maximum thermal expansion is exhibited in the Ox1
direction (as was the case for equilateral triangles), and this maximum value
may be increased by (a) decreasing the value of aS2 relative to aS1ZaS3
(as was the case for the equilateral triangles), or (b) decreasing l2 relative to
l1Zl3. Note that very large positive thermal expansion coefficients can be
exhibited in the limit when l2/(l1Cl3), thus providing the useful property of
thermal strain magnification, i.e. a system which exhibits very high strains
for small changes in temperature. This can have very important applications,
for example, as components of mechanical systems that respond to very small
temperature changes.

Typical plots of a(z) for various combinations of the intrinsic thermal expansion
coefficients are shown in figure 4. These plots highlight the wider range of possible
values that the thermal expansion coefficients of this system can assume when
compared with the system in case I (figure 2).

(e ) Case V: more general cases

Although the special cases I–IV described above highlight the versatility of this
structure, we note that equations (2.7)–(2.12), which apply to more general cases,
suggest that, in reality, the manufacturer of such systems can control the properties
of these systems through choice of any of the independent variables of the system
(the relative lengths and the relative intrinsic thermal expansion coefficients of the
materials used). In this respect, it is important to note that since lm can assume a
continuous range of values, in practice, it would be easier to fine-tune the thermal
expansion properties of the structure by altering the magnitudes of lm rather than
by varying aSm, since the range of values that aSm can assume are discreet and
limited to those of available materials.

Typical plots of a(z) for various combinations of lengths and the intrinsic
thermal expansion coefficients are shown in figure 5. These clearly illustrate the
versatility, anisotropicity and tunability of this connected rods system. An
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animation illustrating this more generalized behaviour is also supplied in the
electronic supplementary material.

4. The temperature dependence of the thermal expansion coefficients

Referring to equations (2.7)–(2.12), it should be noted that since the values of
the thermal expansion coefficients of the structure depend on the lengths lm, in
cases when at least one of the materials has a different aSm from the other two,
the values of the thermal expansion coefficients of the structure will be
dependent on the temperature since the relative magnitudes of lm are
themselves dependent on the temperature. In fact, it is important to note
that the thermal expansion properties discussed above are only valid for small
temperature changes.

This temperature dependence of the coefficients of thermal expansion can have
some very interesting consequences which, for example, may be illustrated by
considering a special case of case I where at a temperature T0, the triangles are
equilateral with aS2Z4aS1Z4aS3. From equation (3.1), this system will exhibit zero
thermal expansion a11 at TZT0. However, as the temperature is increased, the
lengths lm will increase in such a way that l2 will always be longer than l1 and l3 for
temperatures TOT0, and conversely, if the temperature is decreased, the lengths lm
will decrease in such a way that l2 will always be shorter than l1 and l3 for
temperatures T!T0. In such cases, when TsT0, the system will no longer be
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Figure 4. (a,b) Typical plots of a(z), the thermal expansion of the structure at an angle z to the Ox1
axes, against z for systems where the triangles are isosceles at the temperature of interest with the
side of different length having a different thermal expansion coefficient than the other two
(l1Zl3sl 2 and aS1ZaS3saS2, case IV).
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represented by case I but by case IV, i.e. although the system exhibits zero thermal
expansion a11 at TZT0, it will exhibit negative a11 when TOT0, which becomes
more negative as T is increased, and positive a11 when T!T0.

5. Conclusion

In this study, we have modelled a system constructible at any scale, with adjustable
thermal expansion. This system can exhibit very interesting and useful properties
including thermal contraction (negative thermal expansion) and extreme thermal
expansion properties, for example, a positive thermal expansion coefficient which is
much more positive than any of the component materials. We have also shown that
the thermal expansion properties of this system are highly anisotropic and
temperature dependent. Given the simplicity of the construction (compared to
other systems which can exhibit similar properties (Lakes 1996; Sigmund &
Torquato 1996, 1997; Milton 2002)), its adjustability and structural rigidity
(since the construct under analysis consists of triangles which confer substantial
structure rigidity), we envisage that the proposed construct or variations of
it (including three-dimensional constructs where rods of different materials now
form, for example, the edges of tetrahedra) should find extensive use in many
practical applications.
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Figure 5. (a,b) Typical plots of a(z), the thermal expansion of the structure at an angle z to the Ox1
axes, against z for more general cases (case V).
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