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Abstract: Auxetics (negative Poisson’s ratio) and materials with negative linear compressibility
(NLC) exhibit the anomalous mechanical properties of getting wider rather than thinner when
stretched and expanding in at least one direction under hydrostatic pressure, respectively. A novel
mechanism—termed the ‘triangular elongation mechanism’—leading to such anomalous behavior is
presented and discussed through an analytical model. Amongst other things, it is shown that this
novel mechanism, when combined with the well-known ‘rotating squares’ model, can generate giant
negative Poisson’s ratios when the system is stretched.
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1. Introduction

Most conventional materials share a number of macroscopic properties, such as the property
of thinning when stretched (positive Poisson’s ratio), shrinking when placed under pressure
(positive compressibility), or expanding when heated (positive thermal expansion coefficients) [1].
Nevertheless, not all materials behave in this way; in recent decades, there has been an increased
focus on unconventional ‘negative’ materials [2–77]. These materials behave in the opposite manner.
For example, auxetics exhibit the property of getting wider rather than thinner when uniaxially
stretched [2]—a feature which corresponds to a negative Poisson’s ratio (NPR)—whilst materials with
negative linear compressibility (NLC) expand in at least one direction when subjected to a compressive
hydrostatic pressure [3]. Such behavior contrasts sharply with that manifested by most everyday
materials, such as by common plastics or rubber, and has been associated with a number of enhanced
mechanical properties, which make them preferable over their conventional counterparts in a number
of practical applications which require the use of materials with superior properties [3–10]. For
example, auxetics are known to perform better in applications ranging from cushioning (by naturally
forming dome-shaped surfaces and offering enhanced resistance [4]) to noise and vibration control
applications [5].

It is due to these enhanced properties and the wide range of applications that in recent years,
there have been various studies which have attempted to design, model, synthesize, manufacture, or
characterize materials and metamaterials which exhibit one or more of these anomalous properties.
These include zeolites [11–14], silicates and other minerals [15], and polymeric systems [2,16–22] which
exhibit negative Poisson’s ratios, in addition to metal organic frameworks (MOF) which exhibit negative
linear compressibility [23–25]. In tandem, there has also been a significant amount of research aimed at
exploring new mechanisms leading to anomalous behaviors. Examples of such mechanisms include
the rotating rigid unit mechanisms [26–32], the umbrella-style mechanism [33–35], the re-entrant
honeycomb deforming through hinging or flexure [35–37], etc. leading to NPR, as well as the wine-rack
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mechanism leading to NLC [23–25,38], together with the formulation of mathematical models to fully
elucidate their behaviors [8,22,26–31,38].

Since it was first reported two decades ago [12], the rotating squares mechanism has established
itself as one of the leading models which can explain auxeticity in a number of materials, where it
has stood the test of time as a robust and highly applicable model—e.g., [14,21,32]. Variations of
it have been produced [27–30,40,41], some of which have also served as models to explain why a
number of naturally occurring materials (e.g., α-cristobalite and natrolite [14,42]) exhibit negative
Poisson’s ratios. Nevertheless, this model has the limitation of being a two-dimensional (2D) model
which—despite its strengths in explaining the behaviors of materials in particular projections—needs
to be extended to generate negative Poisson’s ratios in all three dimensions (3D). The present work
aims to address this lacuna by proposing and modeling a novel 3D system (mechanical metamaterial)
which uses the 2D ‘rotating squares’ model and expands it to a fully auxetic 3D system through the
use of the newly proposed ‘triangular elongation mechanism’ (TEM), which can cause an increase in
out-of-plane projection when the ‘rotating squares’ model is stretched open. It is also shown that, as
proposed, this system can exhibit other anomalous negative properties, such as NLC. The objective
of this work is to put forward and rigorously analyze a new design concept for the manufacture of
‘negative mechanical systems’ which incorporate an equally novel auxeticity-generating mechanism,
the ‘TEM’, thus augmenting the range of known mechanisms for producing such anomalous behavior.

2. Materials and Methods

2.1. The System Studied

The system studied in this work is represented in Figure 1 and may be described as an
enhanced three-dimensional version of the well-known two-dimensional ‘rotating squares’ model. The
enhancement is produced through extra elements which cause increases in out-of-plane dimensions as
the system is stretched, thus converting it to a three-dimensional auxetic. These extra elements can be
thought of as two sides of a triangular unit lying perpendicularly to the rotating squares structure
(the base), attached at points that are brought closer together when the ‘rotating squares’ are stretched
open. From a geometric perspective, the mechanism presented here is a consequence of the fact that, in
triangular units, the height of a triangle must increase if the base length decreases, thus generating
added thickness out-of-plane (a negative out-of-plane Poisson’s ratio due to what may be referred to as
the ‘triangular elongation mechanism’) to accompany the well-known –1 Poisson’s ratio in-plane. This
results in a metamaterial which exhibits a negative Poisson’s ratio both in-plane and out-of-plane. Due
to practical considerations, the base attachment points shall be taken as the locations of two opposite
vertices of the rhombic pores, i.e., where the hinges are located, marked as AA in pore ADAD, BB in
pore ABAB, CC in pore BCBC, and DD in pore CDCD (see Figure 1). This means that the bases of the
triangular units would correspond to the diagonals of the pores which are opposite pore angles π − θ,
which—as clearly illustrated in Figure 2—get shorter whenever θ increases within the range of 0 to
π/2, thus causing the required increase in height of the out-of-plane triangular units. The inspiration
to use ‘TEM’ to achieve the out-of-plane deformation came from the ability of a triangular unit to
transform from a perfectly flat structure to a fully erect one with a very significant and measurable
change in height. All of this is triggered simply through a reduction of the direct distance between the
ends, AA or BB. Furthermore, as implemented in the construction (see Figure 1) triangular elements
with a single degree of freedom are simple enough to model analytically. Moreover, the inspiration to
use the ‘rotating squares’ as a base structure comes from the fact that, apart from having the required
features which may cause the TEM to operate (referring to Figure 1, the distances AA and BB in this
model decrease as the system is pulled open by uniaxial stretching), it benefits from in-plane isotropic
behavior, robustness, and implementability, as discussed in more detail below.
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Figure 1. The system being modeled where (a) shows the Ox1–Ox2 projections with the unit cell 
highlighted whilst (b) and (c) show the Ox1–Ox3 and Ox2–Ox3 projections of the unit cell. 

 
Figure 2. The auxetic-generating ‘triangular elongation mechanism’ being proposed; illustrated in (a) 
through a triangular building block where the base corresponds to the distance between two opposite 
vertices in the pore of the ‘rotating squares’ structure shown in (b). Note that as the system is stretched 
in the Ox1 direction, the square units located in the Ox1–Ox2 plane rotate relative to each other from 
an angle θ to θ + dθ with the consequence that the distance between opposite vertices A and A (=r) 
decreases. This forces the triangular units located in the orthogonal plane to elongate, causing an 
increase in h and generating a negative Poisson’s ratio. 

Referring to Figure 1, the system being studied may be represented through a periodic 
orthorhombic unit cell where the rotating squares structure is placed in the Ox1–Ox2 plane. With this 
alignment, the projections Xi of the unit cell in the Oxi directions are given by: 
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Figure 1. The system being modeled where (a) shows the Ox1–Ox2 projections with the unit cell
highlighted whilst (b,c) show the Ox1–Ox3 and Ox2–Ox3 projections of the unit cell.
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Figure 2. The auxetic-generating ‘triangular elongation mechanism’ being proposed; illustrated in (a)
through a triangular building block where the base corresponds to the distance between two opposite
vertices in the pore of the ‘rotating squares’ structure shown in (b). Note that as the system is stretched
in the Ox1 direction, the square units located in the Ox1–Ox2 plane rotate relative to each other from
an angle θ to θ + dθ with the consequence that the distance between opposite vertices A and A (=r)
decreases. This forces the triangular units located in the orthogonal plane to elongate, causing an
increase in h and generating a negative Poisson’s ratio.

Referring to Figure 1, the system being studied may be represented through a periodic orthorhombic
unit cell where the rotating squares structure is placed in the Ox1–Ox2 plane. With this alignment, the
projections Xi of the unit cell in the Oxi directions are given by:

X1 = X2 = 2
√

2l sin
(
π
4
+
θ
2

)
(1)

X3 = 2h (2)

where h is the height of the out-of-plane triangular units, given by:

h =

√
L2 −

( r
2

)2
, (3)
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where L is the length of the additional elements forming the sides of the triangular units which move
in the third dimension and r is the base length of the triangles which correspond to the aforementioned
diagonals of the rhombic pores (opposite the angle π − θ) that, for θ between 0◦ and π/2, will be
getting shorter as the rotating squares structure is pulled open (θ increases). Note that the factor
of 2 is necessary, since it is being assumed that triangular units are located both above and below
the plane of the ‘rotating squares’, where they could either have the same base—in which case the
aforementioned triangular unit would be half of a rhombic structure, having diagonals of length r
and 2h (see Figure 1)—or at different locations. The use of rhombic units, having triangular units
both above and below the ‘rotating squares base’ and forming a wine-rack/Milton’s unimode-like
system [31,43,44], has the advantage that the system is easily tessellatable and will not shear. Note also
that, assuming that the squares are perfectly rigid (as is normally assumed in the idealized ‘rotating
squares’ model), the length r is a function of the single variable θ, the angles between the squares, and
is given by:

r = 2l cos
(
θ
2

)
, (4)

i.e., the height h of the triangular unit may be written as:

h =

√
L2 − l2 cos2

(
θ
2

)
, (5)

or, in terms of λ, the ratio of lengths L:l, defined as:

λ =
L
l

. (6)

We obtain:

h = l

√
λ2 − cos2

(
θ
2

)
, (7)

and projections X3 of the unit cell in the Ox3 direction are given by:

X3 = 2l

√
λ2 − cos2

(
θ
2

)
. (8)

Note that for physically realizable systems, for a triangle to form, it is required that:

L >
r
2

, (9)

where the special case L = r/2 relates to the system adopting a hypothetical perfectly flat conformation
which would correspond to an angle between the squares of θf and have zero out-of-plane thickness
(i.e., de facto nonexistent). In practice, this means that L may approach r/2 but may not be equal to it.
This special limiting angle of θf may be expressed in terms of the other geometric parameters (the ratio
of the lengths of the ligaments to the side lengths of the squares) as follows:

θf = 2 cos−1(λ). (10)

This flat conformation will only exist if L < l, with L = l corresponding to a very special—once
again hypothetical—case where the system is fully flat when θ = 0 (i.e., when the rotating squares
structure is fully closed). Note also that, unless restricted by the length of L (see Equation (7)), whilst θ
can physically attain a maximum range of 0 ≤ θ ≤ π, for the purpose of this work, unless otherwise
stated, it shall be assumed that 0 ≤ θ < π/2 so as to ensure that in the Ox1–Ox2 plane, stretching
will cause an increase in the value of θ and a decrease in the value of r, as required for the auxetic
‘triangular elongation mechanism’ to operate. Furthermore, in cases when θf , 0, if it is assumed that
the elements of length L are not stretchable, then the conformation when θ = θf , 0 (a hypothetical
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system as this would have a zero thickness, i.e., does not exist) is the most closed conformation that
the system can attain, since this would effectively result in a physically locked conformation with the
added ligaments acting as ‘brakes’ for the rotational movements. This means that for the ‘triangular
elongation mechanism’ leading to out-of-plane auxetic behavior to operate, the system is physically
constrained to existing with the following range of angles between the squares:

θf < θ < π/2⇒ 2 cos−1(λ) < θ < π/2 (11)

where the special case when λ = 1 (i.e., L = l) gives the maximum range for auxeticity from 0 to π/2.
Values of θ > π/2 correspond to conventional out-of-plane behavior.

2.2. Analytical Model

With all of this in mind, it is possible to derive expressions for the Poisson’s ratios of the system,
which are the negatives of the ratios of lateral strain to axial strain. In the scientific literature, there is
more than one way to formally define the Poisson’s ratio, which essentially depends on the manner
how strain is measured. All of the forms that are in use have their particular advantages over others in
particular circumstances. One of the more commonly used formulations of the Poisson’s ratio is to
define it at particular conformations (i.e., in this case, as a function of θ) at infinitesimally small strains.
This form of the Poisson’s ratio is sometimes referred to as the Poisson’s function or the instantaneous
Poisson’s ratio, and has the advantage that it gives a measure of what the Poisson’s ratio is at the exact
instant of observation as the system is deforming. This may be particularly useful when a system
would be changing the manner in which it is deforming, as is the case of the hinging honeycomb
when transforming to the non-reentrant form from the reentrant one upon stretching. The form of
the Poisson’s ratio used would ideally be able to capture that the system would no longer be getting
wider once it goes past the reentrant to non-reentrant transition point. Other formulations include, for
example, the engineering Poisson’s ratio, defined as the negative of the ratio of the engineering strains,
which is very simple to compute and is particularly appealing for applications where the initial and
final states of the material are of relevance, as is normally the case in real practical applications.

From a computational perspective, since the system can be defined in terms of the single variable
θ in this case, the Poisson’s function may be computed from the ‘infinitesimally small strains’ dεi in
the Oxi directions when changing the angle from θ to θ + dθ; it may be obtained by differentiating
expressions (1) and (8) with respect to θ so as to obtain the strains as follows:

dεi =
1
Xi

(
dXi
dθ

)
dθ. (12)

The expressions for the Poisson’s ratio νij in the Oxi–Oxj plane for stretching in the Oxi direction,
theoretically valid for θf < θ < π/2 and π/2 < θ < π (see discussion below)—in analogy to the work
of Grima and Evans (2000) [26]—in the limit of zero strain for a given value of θ may be obtained as
follows:

νi j = −
dε j

dεi
= −

Xi
X j

(dX j

dθ

)(
dXi
dθ

)−1

. (13)

In analogy to the work of Prall and Lakes [45], Grima and Evans [26], and others, the moduli of this
system may be computed using an energy conservation approach in terms of the stiffness associated
with the hinges, where one may consider one of three ways to how the stiffness is introduced:

i. The stiffness is the result of changes in the angles θ between the squares with the out-of-plane
elements being connected through pin-joints which offer no resistance.

ii. The stiffness is the result of changes in the out-of-plane angles φ between the ligaments with
the squares being connected though frictionless hinges.

iii. Both the in-plane and out-of-plane hinges associated with the angles θ and φ offer resistance.
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In the latter, more general case, since the unit cell as defined in Figure 1 contains eight θ and eight
φ ‘spring hinges’, the total work done per unit cell when θ becomes θ + dθ and φ becomes φ + dφ may
be expressed as:

W = 8
[1
2

kθ(dθ)
2
]
+ 8

[1
2

kφ(dφ)
2
]

(14)

where, recognizing that θ and φ are interdependent variables, dθ and dφ are interrelated, i.e., dφ may
be expressed in terms of dθ. In fact, recognizing that the parameters r and h defined in Equations (4)
and (5) may also be written in terms of φ as:

r = 2L sin
(
φ

2

)
(15)

and:

h = L cos
(
φ

2

)
, (16)

then dθ and dφ on dr, the change in r, must be recognized through:

dr = −l sin
(
θ
2

)
dθ = L cos

(
φ

2

)
dφ = hdφ, (17)

i.e.,:

dφ = −
l sin

(
θ
2

)
√

L2 − l2 cos2
(
θ
2

)dθ = −
sin

(
θ
2

)
√
λ2 − cos2

(
θ
2

)dθ. (18)

In the special case when λ = 1 (L = l), this simplifies to:

dφ = −dθ. (19)

which could have been obtained directly by recognizing that, in such a case:

r = 2l cos
(
θ
2

)
= 2l sin

(
φ

2

)
= 2l cos

(
π
2
−
φ

2

)
⇒ θ = π−φ. (20)

Thus, in the general case, the work done per unit cell can be re-expressed in terms of dθ as follows:

W = 8
[

1
2 kθ(dθ)

2
]
+ 8

 1
2 kφ

 − sin( θ2 )√
λ2−cos2( θ2 )

dθ

2
=

[
4kθ + 4kφ

sin2( θ2 )
λ2−cos2( θ2 )

]
(dθ)2

(21)

In the specific case where L = l:

W = 8
[

1
2 kθ(dθ)

2
]
+ 8

[
1
2 kφ(−dθ)2

]
= 4

[
kθ + kφ

]
(dθ)2 (22)

We may also write an expression for U, the strain energy per unit volume, in terms of is dθ as
follows:

U =
1
2

Ei(dεi)
2 =

1
2

Ei

[
dXi
Xi

]2

=
1
2

Ei

[
1
Xi

(
dXi
dθ

)
dθ

]2

, (23)

which can be related to W, through the principle of conservation of energy:

U =
1
V

W, (24)
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where V is the volume of the unit cell given by:

V = X1X2X3. (25)

Thus, from the equations above, we obtain, for the general case:

1
2

Ei

[
1
Xi

(
dXi
dθ

)
dθ

]2

=
1

X1X2X3

4kθ + 4kφ
sin2

(
θ
2

)
λ2 − cos2

(
θ
2

) (dθ)2, (26)

which, making Ei the subject of the formula and simplifying, gives an expression for Ei as follows:

Ei =
8X2

i
X1X2X3

kθ + kφ
sin2

(
θ
2

)
λ2 − cos2

(
θ
2

) 
(

dXi
dθ

)−2

. (27)

In the special case when L = l, this simplifies to:

Ei =
8X2

i
X1X2X3

[
kθ + kφ

](dXi
dθ

)−2

. (28)

2.2.1. The Poisson’s Ratios

From Equations (1), (4), and (8), it may be shown that the Poisson’s ratios may be simplified as
follows:

ν12 = (ν21)
−1
−

dε2

dε1
= −

cot
(
π
4 + θ

2

)
cot

(
π
4 + θ

2

) =

−1 0 < θ < π,θ , π
2

unde f ined θ = π
2

(29)

and:

ν13 = ν23 = (ν31)
−1 = (ν32)

−1 = −
dε3

dε1
= −

dε3

dε2
= −

sin(θ) tan
(
π
4 + θ

2

)
2
(
λ2 − cos2

(
θ
2

)) . (30)

2.2.2. The Young’s Moduli

From Equations (1), (4) and (19), it may be shown that the Young’s moduli may be simplified as
follows:

Ei =
8

X3

kθ + kφ
sin2

(
θ
2

)
λ2 − cos2

(
θ
2

) 
(

dXi
dθ

)−2

(i = 1, 2) (31)

and

E3 =
8X3

X1X2

kθ + kφ
sin2

(
θ
2

)
λ2 − cos2

(
θ
2

) 
(

dX3

dθ

)−2

, (32)

i.e.,:

E1 = E2 = 2

kθ + kφ
sin2

(
θ
2

)
λ2 − cos2

(
θ
2

) 
l3 cos2

(
π
4
+
θ
2

)√λ2 − cos2
(
θ
2

)−1

(33)

and:

E3 = 8

kθ + kφ
sin2

(
θ
2

)
λ2 − cos2

(
θ
2

) 
(
λ2
− cos2

(
θ
2

))3/2

l3 sin2(θ) sin2
(
π
4 + θ

2

) . (34)

In the special case when λ = 1 (i.e., L = l):

E1 = E2 = 2
[
kθ + kφ

] [
l3 cos2

(
π
4
+
θ
2

)
sin

(
θ
2

)]−1
(i = 1, 2) (35)
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and:

E3 = 8
[
kθ + kφ

]  sin3
(
θ
2

)
l3 sin2(θ) sin2

(
π
4 + θ

2

) . (36)

Note that equations E1 and E2 in Equation (33) will tend to infinity as θ tends to π/2, the fully
open position, as expected, since at this instance, the system becomes locked. This is not the case for
E3, thus indicating that one may go past the π/2 locking position through a process of stretching or
compressing in the Ox3 direction.

2.2.3. The Compliance Matrix, Linear Compressibility, and Off-Axis Properties

Recognizing that, assuming idealized hinging behavior, the system as designed cannot shear
on-axis, it may be further deduced that the only non-zero elements of the 6 × 6 compliance S = (sij)
(i,j = 1,2, . . . 6) matrix are sij (i,j = 1,2,3). Thus, the compliance matrix of this system is given by:

S =



s11 s12 s13 0 0 0
s21 s22 s23 0 0 0
s31 s32 s33 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


=



1
E1

−ν21
E2

−ν31
E3

0 0 0
−ν12
E1

1
E2

−ν32
E3

0 0 0
−ν13
E1

−ν23
E2

1
E3

0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


. (37)

The elements of this matrix may be used to obtain the on-axis compressibility, which defines how
the system responds to a hydrostatic pressure p, which, in the Oxi direction, is defined by:

βi = si1 + si2 + si3i = 1, 2, 3, (38)

as well as the off-axis mechanical properties, which may be obtained using standard axis transformation
techniques as discussed elsewhere [78].

3. Results and Discussion

Plots of the Poisson’s ratios, Young’s moduli, and compressibility (on-axis) for the various values
of λ are shown in Figure 3. These plots clearly show that the system, as modified through the addition
of the extra out-of-plane ligaments, exhibits various properties which could not be afforded by its
two-dimensional counterpart, such as the six simultaneously negative Poisson’s ratios νij (i,j = 1,2,3)
which are exhibited when θ is less than π/2, the possibility of passing through the ‘locking conformation’
through stretching/compression in the Ox3 direction, and the negative linear compressibility in some
systems when θ is greater than π/2. In fact, using the nomenclature coined by Wojciechowski, this
system may be termed as a ‘complete auxetic’, meaning that it may exhibit a negative Poisson’s ratio
for loading in any direction [69,70] (as opposed to partially auxetic, which refers to systems which
are only auxetic in specific planes for loading in specific directions, or non-auxetic, which refers to
systems which do not exhibit any auxetic behavior). Certain other important features, such as the −1
Poisson’s ratios for in-plane loading in the Ox1–Ox2 plane, are retained. While the plots of the various
properties as illustrated in Figure 3 are self-explanatory and highlight the versatility of the system as a
truly multifunctional metamaterial which can exhibit a number of anomalous negative properties, it
would be useful to discuss some of the other aspects that emerge from the expressions.
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2 and 1, respectively, whilst l was set as 1.
Units are arbitrary.

A particular feature of this model which merits discussion includes the stiffness characteristics and
how they compare with those of the original 2D analogue by Grima and Evans (2000) [26]. For example,
it should be noted that the moduli E1 and E2 of the system presented here, had the stiffness be imparted
only through the in-plane ‘rotating squares’ θ-hinges, i.e., kφ = 0, are not equivalent to those derived
for the original 2D analogue. This is due to the fact that, upon stretching, the stiffness of the model is
being attenuated by the very large increase in the dimensions in the Ox3 dimension and vice-versa
during compression. Obviously, to make a fair comparison, it is important that the monolayer 2D
system is converted to a multilayer system (as in the relationship between graphene and graphite)
and that L is chosen in a manner that gives the same density of squares for the initial conformation.
In addition, the tendency to get the moduli tending to +∞ as the present system approaches its flat
conformation (zero third dimensional thickness) is a property which could not be achieved by systems
having a constant out-of-plane thickness.

The very pronounced change in separations between the parallel sets of squares tessellated down
the Ox3 dimension, which may be induced through a rotation of the squares or pulling of the structure,
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may also lend itself to a number of practical applications, which may range from mechanically tunable
electronic components to smart erectable structures. It suffices to mention the fact that the systems
where λ < 1 are expected to be erected from a perfectly flat conformation to one with a very significant
thickness, where the systems with λ→1 could change their unit cell dimensions from circa 2l× 2l× 0 (a
flat sheet, when θ = 0) to 2 √2l× 2 √2l× √2l (a cuboid, when θ = π/2) to 2l × 2l × 2l (a cube, when
θ = π/2) as θ changes from 0 to π. Obviously, the reverse could also happen, as it is possible to compress
from a cube to a flat sheet.

Another feature that is noteworthy is the fine manner of how the stiffness in the structure can
be controlled. In fact, although the dθ and dφ are not independent of each other, the relationship
between them is a rather complex one which depends on both the value of θ (or φ)—i.e., the extent
of the aperture of the system—and the ratio λ. This means that through the careful choice of the
geometric parameters used and the relative extents of kθ and kφ, one may fine-tune the stiffness of the
system, as well as the particular shape of the stiffness vs. θ relationship (which dictates the shape of
the stress–strain plot) for particular practical applications.

Focusing on the Poisson’s ratio, it is important to emphasize that the regions of the positive
out-of-plane Poisson’s ratio when θ is greater than π/2 should not be viewed as a limitation, as it is
this property which results in the negative compressibility behavior, a feature which is shared with
other anisotropic NLC materials where a high positive Poisson’s ratio results in NLC. In addition,
the physical co-existence of the ‘rotating squares’ and ‘wine-rack’/‘unimode’ mechanisms, which are
well known for other negative thermo-mechanical properties such as negative thermal expansion
(NTE) [46–50], permits the potential co-existence of multiple anomalous thermo-mechanical properties
which are beyond the scope of this work to investigate exhaustively.

Before we conclude, it is important to highlight some important aspects which should be considered
if the concepts presented here are to be used for the design and manufacture of physical materials or
mechanical materials in real practical applications. First and foremost, it is important to highlight that
although the present work has relied on the use of the rotating squares system as the ‘base structure’
of this novel metamaterial, other systems which have within them the essential minimal structural
features that can support the proposed ‘triangular elongation mechanism’ (TEM) can also be used. This
means that systems such as those of the rotating rectangles, parallelograms, rhombi, or triangles, as
well as the classical wine-rack model and a number of honeycombs, can all potentially be transformed
into three-dimensional auxetic metamaterials of this form. In addition, although this work has relied
on hinging via a unimode wine-rack style mechanism for the out-of-plane deformation, one could
conceive other ‘designs’ that can be ‘pushed out of plane’. For example, as shown in Figure 4, one can
achieve the same effect through the use of thin flexible ligaments or sheets which are pushed from both
ends, forcing them to buckle and deflect laterally (provided that the applied load exceeds the critical
buckling load). Irrespective of the exact shape of the deflection curve (which is not the scope of this
study), the extent of lateral deflection in such systems is generally not negligible and arises due to
the fact that flexure/hinging modes of deformations are generally preferred to stretching/compression.
It should also be noted that although the model presented here is in the form of a 3D fully periodic
system, the same mechanism can also be implemented as a 2D sheet-like system (which could be
considered as a model for a thin-sheet material) or as a finite system. All of these different forms of
potential implementation make this material model even more versatile as a blueprint for the design
of new materials and metamaterials. To realize the merits of the proposed structure and to have a
direct proof of the versatility of the proposed system and its ability to achieve large negative Poisson’s
ratios out-of-plane, we directly measured the deformations that occurred when the prototype shown in
Figure 4 was stretched (see Animation in Supplementary Information). These measurements confirm a
change in the out-of-plane dimensions from c. 1 mm to c. 40 mm as the system is pulled in the Ox1

direction from a characteristic length of c. 120 mm to c. 135 mm, a change which corresponds to an
engineering Poisson’s ratio of c. −9.
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Figure 4. Image showing a ‘monolayer’ physical prototype (a) being stretched in the Ox1 direction or
(b) compressed. Note that on stretching in Ox1, there is an increase in width in the Ox2 direction due to
the rotating squares mechanism and an increase in thickness in the Ox3 direction due to the proposed
triangular elongation mechanism (TEM), which is implemented here through thin flat ligaments which
flex out of plane (see the animation). Note also that, despite the crudeness in construction of the
physical prototype (squares made from regular sheets of c. 0.4 mm plastic, TEM implanted via a thin
sheet of perforated paper c. 0.1 mm in thickness and 90 mm in length, and connections provided by
regular office brass fasteners), there is still a remarkable similarity with the idealized hinging model
presented above.

Furthermore, as evident from the expressions derived, the properties reported here are not
dependent on the actual scale of the system or on the chemical composition of the materials used
for the construction, as is the case with other mechanical metamaterials. This important property
means that the blueprint discussed here could, at least in theory, be fully implemented at any scale of
structure, down to the nanoscale, where real materials could be designed in a manner that they mimic
the behavior of the systems presented here. It is comforting to note that in recent years, there have
already been a number of attempts to design, synthesize, and characterize a number of materials based
on either the ‘rotating squares’ or the ‘wine-rack’/’unimode’ mechanisms. However, it should also be
remembered that the model presented here is a highly idealized model where, for example, the squares
and the ligaments are treated as perfectly rigid units which rotate/hinge relative to each other without
bending, warping, or stretching. In real physical implementations, such idealized behavior may not
be as easily achieved and other modes of deformation are likely to be present. Whether such ‘extra’
modes would be significant enough to drastically reduce the extent of anomalous behavior reported
here (possibly even annihilating it) remains to be seen. In this respect, it should be appreciated that the
mathematical model presented here, particularly the compliance matrix reported here in Equation (37),
has its limitations and should be used with some caution. First and foremost, this compliance matrix
is only fully applicable for idealized systems deforming solely and exclusively through hinging; it
assumes highly idealized operations (such as the use of perfectly elastic hinges, complete lack of
imperfections, etc.). In real physical implementations, such perfection is difficult to achieve; e.g., one
would not be able to attain a zero s44, s55, and s66, as in practice, infinite resistance to shear cannot be
attained (at the very least, there are the limitations imposed by the intrinsic mechanical properties of
the constituent materials). Apart from this, the matrix in Equation (37) predicts the properties at small
strains (i.e., it gives a measure of the various properties for a particular conformation of the model at a
specific instant in the deformation profile); this is not the ideal formulation to describe the behavior
of the system as a function of strain. In addition, although auxetics are known to exist at the nano,
micro, and macro scales, it may be more of a challenge to implement the presented mechanism at the
“smaller” scales, and more research is needed to convert this theoretical model to a working prototype
at the smaller length scales. Here, particular emphasis must be placed on how the TEM could be joined
with rotating squares. In this respect, it would also be useful if additional modeling and computations
are carried out to investigate the stresses in the system, particularly for cases when the Poisson’s ratio
tends to the more extreme values. It is, however, comforting that existing experimental work on the
‘rotating squares’ or the ‘wine-rack’/’unimode’ mechanisms has so far confirmed that these mechanisms
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are very robust and normally implementable, thus auguring well for the possible future developments
of multifunctional materials and metamaterials based on the model presented here. In addition, the
macroscale prototype shown in Figure 4, which includes TEM components made of paper, seems to
perform well.

Obviously, the work presented here should be viewed within the framework of other work in this
field aimed at achieving negative mechanical properties in 3D. Here it should be mentioned that, apart
from the planar rotational structures (for example, rotating rigid squares, parallelograms, triangles,
etc. [26–32]), 3D rotational structures constructed of cubes linked at certain edges or vertices, either
directly or through ligaments [71–73], can also be employed. When such systems are stretched or
compressed, the cubic units rotate and angles between the adjacent sides change, leading to spatial
expansion or shrinkage that may be conducive of auxetic behavior. Other 3D auxetics were recently
put forward by Almgren [35], Ma et al. [74,75], and Lim [76], who proposed systems which may be
described in terms of the 3D equivalents of the reentrant honeycombs [36,37] or the double arrowhead
honeycomb structure [77]. Some of these systems can also exhibit giant negative Poisson’s ratios: For
example, Lim [78] has shown, through a similar geometrical analysis on the basis of rigid linkages
with rotational joints, that auxeticity in his model is manifested in all three orthogonal planes, in which
the auxeticity may even tend to infinity. While recognizing that it is beyond the scope of this work
to report a detailed review or comparison of the different systems, which all involve some rotating
elements, it is worthwhile to mention that the applicability or otherwise of a particular design over
another is dependent on a number of factors, which may range from ease of manufacture to particular
design features which may make one system preferable to another. For example, the present system
offers the advantage that it is made of plates and rods (or beams) rather than cuboids, which means
that it is likely to be lighter than its counterparts constructed from cuboidal solid units. In addition, the
presence of plates which remain parallel to each other throughout the deformation process (which are
not present in the other systems) may be beneficial in specific applications which may require them
(e.g., in the manufacture of smart electronic devices).

4. Conclusions

This paper has presented a novel concept for transforming the two-dimensional rotating squares
mechanism into a three-dimensional construct which can exhibit a multitude of anomalous negative
properties. It was shown that one may make use of the feature that upon stretching of the ‘rotating
squares’ base structure, the distance between some of the opposite hinged corners actually decreases
so as to put into operation a newly proposed ‘triangular elongation mechanism’ (TEM) to generate
negative out-of-plane Poisson’s ratios. With the help of analytical models, it was formally proven that
this system is capable of demonstrating six simultaneously negative Poisson’s ratios νij (i,j = 1,2,3),
as well as negative linear compressibilities, both of which are scale-independent properties and thus
implementable at any scale of structure. Other ways of constructing these systems, such as the possible
use of different base structures (e.g., rotating rectangles, triangles, parallelograms, rhombi, wine-racks,
or honeycombs) in lieu of the ‘rotating squares’ were also discussed. Given the versatility of the
model used—which is even applicable to sheet-like materials—together with the well-known fact that
the mechanisms used here may also manifest other negative thermo-mechanical properties such as
negative thermal expansion, we hope that this work will provide an impetus to experimentalists to
design and manufacture new materials and metamaterials which mimic the model presented here
or variations of it. We are also confident that some of the innovative contributions disclosed in this
work—particularly the ‘TEM’ concept, the prototype itself, and the elucidation of how the TEM and
the rotating rigid units mechanisms can be made to work together in a synergistic manner—has helped
expand the state of the art in the field of mechanical metamaterials.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/1/79/s1.
Figure S1: Animation of the Proposed Auxetic Mechanism.
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54. Poźniak, A.A.; Wojciechowski, K.W.; Grima, J.N.; Mizzi, L. Planar auxeticity from elliptic inclusions. Compos.

Part B Eng. 2016, 94, 379–388. [CrossRef]
55. Narojczyk, J.; Wojciechowski, K. Poisson’s Ratio of the f.c.c. Hard Sphere Crystals with Periodically Stacked

(001)-Nanolayers of Hard Spheres of Another Diameter. Materials (Basel) 2019, 12, 700. [CrossRef] [PubMed]
56. Narojczyk, J.W.; Kowalik, M.; Wojciechowski, K.W. Influence of nanochannels on Poisson’s ratio of degenerate

crystal of hard dimers. Phys. Status Solidi B 2016, 253, 1324–1330. [CrossRef]
57. Kadic, M.; Tiemo, B.; Schittny, R.; Wegener, M. Metamaterials beyond electromagnetism. Rep. Prog. Phys.

2013, 76, 126501. [CrossRef] [PubMed]
58. Qu, J.; Kadic, M.; Naber, A.; Wegener, M. Micro-Structured Two-Component 3D Metamaterials with Negative

Thermal-Expansion Coefficient from Positive Constituents. Sci. Rep. 2017, 7, 40643. [CrossRef]
59. Bückmann, T.; Schittny, R.; Thiel, M.; Kadic, M.; Milton, G.W.; Wegener, M. On three-dimensional dilational

elastic metamaterials. New J. Phys. 2014, 16, 33032. [CrossRef]
60. Qu, J.; Kadic, M.; Wegener, M. Poroelastic metamaterials with negative effective static compressibility. Appl.

Phys. Lett. 2017, 110, 171901. [CrossRef]
61. Novak, N.; Vesenjak, M.; Kennedy, G.; Thadhani, N.; Ren, Z. Response of Chiral Auxetic Composite Sandwich

Panel to Fragment Simulating Projectile Impact. Phys. Status Solidi B 2019, 1, 1900099. [CrossRef]
62. Grima, J.N.; Cauchi, R.; Gatt, R.; Attard, D. Honeycomb composites with auxetic out-of-plane characteristics.

Comp. Struct. 2013, 106, 150–159.
63. Strek, T.; Jopek, H.; Wojciechowski, K.W. The influence of large deformations on mechanical properties of

sinusoidal ligament structures. Smart Mater. Struct. 2016, 25, 054002. [CrossRef]
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