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Auxetic behaviour from connected
different-sized squares and rectangles

BY JOSEPH N. GRIMA*, ELAINE MANICARO AND DAPHNE ATTARD

Faculty of Science, University of Malta, Msida MSD 2080, Malta

Auxetic materials exhibit the unusual property of becoming fatter when uniaxially
stretched and thinner when uniaxially compressed (i.e. they exhibit a negative Poisson
ratio; NPR), a property that may result in various enhanced properties. The NPR is the
result of the manner in which particular geometric features in the micro- or nanostructure
of the materials deform when they are subjected to uniaxial loads. Here, we propose and
discuss a new model made from different-sized rigid rectangles, which rotate relative to
each other. This new model has the advantage over existing models that it can be used
to describe the properties of very different systems ranging from silicates and zeolites to
liquid-crystalline polymers. We show that such systems can exhibit scale-independent
auxetic behaviour for stretching in particular directions, with Poisson’s ratios being
dependent on the shape and relative size of different rectangles in the model and the
angle between them.
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1. Introduction

Unless a material has a zero Poisson ratio, it will change its thickness when
it is uniaxially stretched or compressed. In fact, conventional materials having a
positive Poisson ratio are observed to get thinner when stretched and fatter when
compressed in a uniaxial direction. Although such behaviour is assumed to be the
norm, the classical theory of elasticity suggests that Poisson’s ratio need not be
positive. In fact, Poisson’s ratio for isotropic three-dimensional materials ranges
from −1 to 0.5.

In recent years, there were significant developments in materials that exhibit
a negative Poisson ratio (NPR), commonly known as auxetic (Evans et al.
1991). Such developments include work on cellular systems (Gibson et al. 1982;
Gibson & Ashby 1997), foams (Lakes 1987; Evans et al. 1994; Scarpa et al.
2004a; Bezazi & Scarpa 2006; Grima et al. 2009a), polymers (Caddock & Evans
1989; Evans et al. 1991, 1995; Baughman & Galvao 1993; Grima & Evans 2000a,b;
Alderson et al. 2001; He et al. 2005a,b; Ravirala et al. 2005), metals (Baughman
et al. 1998), silicates (Keskar & Chelikowsky 1992; Yeganeh-Haeri et al. 1992;
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Kimizuka et al. 2000; Alderson & Evans 2001, 2002; Alderson et al. 2004, 2005)
and zeolites (Grima 2000; Grima et al. 2000, 2005b, 2007c, 2009b; Sanchez-Valle
et al. 2005; Williams et al. 2007).

Auxeticity can bring about various enhanced properties that include high-
energy absorption properties (Bezazi & Scarpa 2006; Alderson & Alderson 2007),
increased indentation resistance (Lakes & Elms 1993; Alderson 1999; Evans &
Alderson 2000), enhanced sound and vibration absorption properties (Scarpa &
Tomlinson 2000; Scarpa & Smith 2004; Scarpa et al. 2004a,b, 2005) and the ability
to form dome-shaped structures (Lakes 1987; Evans et al. 1991; Alderson 1999;
Evans & Alderson 2000) and to act as smart filters (Alderson et al. 1998a, 2001;
Grima et al. 2000; Ravirala et al. 2005).

Research suggests that auxeticity can be explained in terms of geometric
models, which describe how particular geometric features in the micro- or
nanostructure of the materials deform when they are subjected to uniaxial loads.
Auxeticity is also known to be a scale-independent property, which means that
the same ‘geometry/deformation mechanism’ may be found to operate in systems
ranging from macroscale to nano (atomic) scale. As a result of this, research
in the field of auxetics often focuses on the analysis of mechanistic models,
which result in auxetic behaviour, and in recent years, various geometry-based
models that lead to auxeticity by deforming through particular deformation
mechanisms have been proposed. These include models based on conventional
honeycombs deforming through stretching (Evans et al. 1995; Masters & Evans
1996), re-entrant honeycombs deforming through hinging and/or flexure (Gibson
et al. 1982; Evans et al. 1995; Masters & Evans 1996; Gibson & Ashby 1997),
chiral honeycombs (Prall & Lakes 1997; Grima 2000; Spadoni et al. 2005; Grima
et al. 2008a,b) and two-/three-dimensional rotating rigid/semi-rigid units (Grima
et al. 1999, 2004, 2005a,b, 2006, 2007a, 2008a,b; Grima 2000; Grima & Evans
2000a; Ishibashi & Iwata 2000; Alderson & Evans 2001, 2002; Alderson et al.
2004, 2005; Attard & Grima 2008; Attard et al. 2009a,b). In addition, at smaller
length scales, in particular, the micro-, meso- and nanoscale, other effects such as
defects and disorder may become important and may affect auxeticity (Gaspar
et al. 2003; Gaspar 2008; Horrigan et al. 2009), although in several cases, ordered
macroscale models have been found to be very useful to account for observed
auxeticity qualitatively and/or quantitatively.

Rotating polygons were first studied by Grima et al. (1999), who studied
rotating square structures and used them to explain the NPR in various zeolites.
This area of research was further developed through the study of auxeticity of
rotating congruent rectangles (Grima et al. 2004, 2005a,b), equilateral triangles
(Grima & Evans 2006), rhombi (Attard & Grima 2008; Grima et al. 2008a,b) and
parallelograms (Williams et al. 2007; Grima et al. 2008a,b; Attard et al. 2009a).
In the case of rotating squares, Poisson’s ratio was shown to be −1, irrespective of
the direction of loading and dimensions of the squares. This work was of particular
significance in view of the many naturally occurring crystalline materials, which
have geometric features similar to the ‘rotating squares’ model, including the
zeolite natrolite, which was recently confirmed to be auxetic (Sanchez-Valle et al.
2005; Grima et al. 2007c, 2009b; Williams et al. 2007). It was also shown that
rectangles of the same shape and size can be connected through hinges at their
vertices in two different ways: type I, in which the rectangles are connected in
such a way that the empty spaces form rhombi, or type II, in which the empty
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Figure 1. The system made from connected different-sized rectangles of dimensions a × b and c × d
(denoted by [a × b, c × d]) discussed in this paper. Note that this system may be described in terms
of two unit cells (UC1 and UC2) and in the derivation presented here, the system is aligned in the
Ox1–Ox2 plane in such a way that the side of the unit cell UC2 of length l2 is always parallel to
the Ox2 direction. Grey dashed lines, UC1 and long dashed lines, UC2.

spaces are parallelograms. Grima et al. (2004, 2005a,b) have shown that the type
II rectangles are two-dimensionally isotropic with a Poisson ratio of −1, whereas
the type I rectangles are anisotropic with a Poisson ratio being also dependent
on the shape of the rectangles and the hinging angle between adjacent rectangles.
Once again, such patterns and deformation mechanisms can be found in naturally
occurring auxetics, where, for example, the type II rotating ‘rectangles model’ has
been shown to be manifested in the naturally occurring silicate a-cristobalite.

Although this work had marked an important step forward as it highlighted the
role of shape, size and connectivity of rectangles on the mechanical properties, in
particular, Poisson’s ratios, it was limited due to the fact that all of the rectangles
were required to be of equal size and thus could only be applied to very particular
and highly idealized systems. In particular, one may consider a more general
system that is made from two types of rectangles of dimensions a × b and c × d,
which may be denoted by [a × b, c × d], as illustrated in figure 1, of which Grima’s
type I and type II ‘rotating rectangles’ models are particular cases. (The type I
systems may be achieved by letting c = b and d = a, i.e. structure [a × b, b × a],
whereas the type II system is achieved by letting c = a and d = b, i.e. structure
[a × b, a × b].)

In view of all this, here we present a model that can predict the behaviour
of a system made from rigid rectangles of dimensions a × b and c × d connected
together at their vertices through simple hinges, as illustrated in figures 1 and 2
with the aim of predicting the extent of auxeticity of such systems. Special cases
arising from such systems are also discussed.

2. Analytical model

A space-filling tessellation is formed by connecting each a × b rectangle to four
c × d rectangles, as shown in figure 1. As illustrated in figure 2 (see animation in
the electronic supplementary material), stretching of such systems in particular
directions will result in a relative rotation of the rectangles. This may result in
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Figure 2. Illustration of the type of deformations that may be obtained from rigid rectangles
connected together at their vertices through flexible hinges as a result of uniaxial loading in the
Ox1 direction. Note that as the structure is stretched in the Ox1 direction, the rectangles rotate
relative to each other and extend in the Ox2 direction, hence the NPR. This is also accompanied
by a shearing of the structure. An animation of this figure is also provided (Anim-2.gif, electronic
supplementary material).

a more open structure (hence the NPR), if one assumes that the different-sized
rectangles are perfectly rigid, but are connected to each other through simple
hinges, which only permit relative rotation of the rectangles. Here, it should be
noted that although this paper derives Poisson’s ratio in the setting of a uniaxial
stretching/compression test, Poisson’s ratio, like any other elastic constant, will
have an effect on any stress/strain state of the system.

Note that although the rectangles can be connected in two different ways such
that the resulting empty spaces between the rectangles are either parallelograms
of dimensions a × c and b × d or of a × d and b × c, these two cases are obviously
identical as the length of the sides is chosen arbitrarily, with the result that one
need not speak about type I rectangles or type II rectangles in such cases.

This tessellation illustrated in figure 1 can be described by either of the two
unit cells, which have a different orientation in the global Ox1–Ox2 coordinate
system and are being highlighted as ‘UC1’ and ‘UC2’. Note that the UC2 unit
cell is the smallest unit cell and contains only two rectangles, one of each type.
In contrast, the unit cell UC1 contains four rectangles, i.e. two of each type of
rectangles. Also note that these two unit cells are related such that the diagonal
of the unit cell UC2 coincides with one of the sides of the unit cell UC1. In this
study, the mechanical properties will be described using the unit cell UC2.

In our derivation, it shall be assumed that the structure is aligned in the
Ox1–Ox2 space in such a way that the unit cell side of length l2 is always parallel
to the Ox2 direction, whereas the other unit cell side of length l1 can assume any
direction. Under such assumptions, the projections of the parallelogramic unit
cell UC2 in this orientation along the Oxi directions are given by

X11 = l1 sin a12 (2.1)

and
X22 = l2, (2.2)

where X11 is the projection of the unit cell in the Ox1 direction, X22 is the
projection of the unit cell in the Ox2 direction and a12 is the internal angle
of the unit cell (a12 = 90 − r + s, where r and s are the angles shown in figure 1).
The lengths l1 and l2 and the angle a12 may be expressed in terms of geometric
parameters a, b, c and d (the side lengths of the rectangles, which are assumed to
be constants in this derivation) and the angle q (the angle between the rectangles,
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which is a variable), and are given by

l1 =
√

a2 + c2 + 2ac sin(q), (2.3)

l2 =
√

b2 + d2 + 2bd sin(q) (2.4)

and sin a12 = 1
l1l2

[ab + cd + sin(q)(ad + cb)]. (2.5)

Note that in the general case, the internal angle of the unit cell a12 is dependent
on q. This implies that, in general, the unit cell shears upon deformation, i.e.
a change in q as a result of an applied stress in the Ox1 or Ox2 direction will
result in strains in the Ox1 and Ox2 directions as well as a shear strain. In two
dimensions, the mechanical properties of such system can be described by a 3 × 3
compliance matrix S, which relates the applied stress s to the resultant strain
3 according to the following relationship:

3 = Ss, (2.6)

where S is of the form (Daniel & Ishai 1994)

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
E1

−n21

E2

h31

G12
−n12

E1

1
E2

h32

G12
h13

E1

h23

E2

1
G12

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2.7)

where n12 and n21 are Poisson’s ratios for loading in the Ox1 and Ox2 directions,
respectively, E1 and E2 are Young’s moduli in the Ox1 and Ox2 directions,
respectively, and G12 is the shear modulus in the Ox1–Ox2 plane. h13, h31, h23
and h32 are the shear coupling coefficients defined as

hi3 = dg

d3i
and h3i = d3i

dg
, i = 1, 2, (2.8)

where dg is the shear strain and d3i are the normal strains in the Oxi directions
(i = 1, 2).

In general, the unit cell may shear upon application of only normal strains in
the Oxi directions (i = 1, 2), a property that results in non-zero shear coupling
coefficients (cases in which the internal angle a12 of the unit cell is dependent on
q), such that, in general, one needs to derive six independent elastic constants
(S is a symmetric matrix), e.g. Ei , nij , G12 and hij , to fully characterize a system.
However, this is not always the case, and there are certain configurations for
which the internal angle of the unit cell is independent of q, in which cases,
the coupling coefficients have a null value. For example, there is no shearing of
the unit cell in the type II rectangles [a × b, a × b], a system that has isotropic
n12 = −1 (Grima et al. 2004, 2005a,b).

Proc. R. Soc. A (2011)

 on March 12, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/
http://rspa.royalsocietypublishing.org/
https://www.researchgate.net/publication/270745112_Negative_Poisson's_ratio_from_rotating_rectangles?el=1_x_8&enrichId=rgreq-e6ca98de9ca58d593729c04bf76eac38-XXX&enrichSource=Y292ZXJQYWdlOzIzOTAzNzYwMjtBUzoyOTM4NTA2MzY2Njg5MzFAMTQ0NzA3MDg1OTQzMQ==


444 J. N. Grima et al.

(a) Strains in the Oxi directions and on-axis Poisson ratios

Poisson’s ratio for loading in the Oxi direction is given by

nij = −d3j

d3i
, i, j = 1, 2, (2.9)

where d3i is an infinitesimally small strain in the Oxi direction given by the ratio
of the infinitesimally small change in the unit cell dimension dXii to the unit cell
dimension Xii

d3i = dXii

Xii
, i = 1, 2. (2.10)

Assuming that the only deformation mechanism is hinging, the geometry of the
systems is dependent on the single variable q and hence the strains can be
re-written as

d3i = 1
Xii

dXii

dq
dq, i = 1, 2. (2.11)

By substituting for l1, l2 and sin(a12) in equations (2.1) and (2.2) and
differentiating with respect to q, the strains along the Ox1 and Ox2 directions
are found to be

d31 = cos(q)[ad3 + cb3 + bd sin(q)(ad + cb)] dq

[b2 + d2 + 2bd sin(q)][ab + cd + sin(q)(ad + cb)] (2.12)

and

d32 = bd cos(q) dq

b2 + d2 + 2bd sin(q)
. (2.13)

Hence, Poisson’s ratio n12 for loading in the Ox1 direction and Poisson’s ratio
n21 for loading in the Ox2 direction can be written as

n12 = (n21)−1 = −d32

d31
= −bd[ab + cd + sin(q)(ad + cb)] cos(q)

[ad3 + cb3 + bd sin(q)(ad + cb)] cos(q)

=

⎧⎪⎨
⎪⎩

−bd[ab + cd + sin(q)(ad + cb)]
[ad3 + cb3 + bd sin(q)(ad + cb)] , for 0◦ ≤ q ≤ 180◦, q �= 90◦,

L, for q = 90◦,
(2.14)

where L is defined as

L = lim
q→90− n12(q) = lim

q→90+ n12(q). (2.15)

Note that Poisson’s ratio n12(q) has a removable discontinuity point (Thomson
et al. 2001) at q = 90◦, which can be removed by defining Poisson’s ratio at q = 90◦
equal to the limit L. This removable discontinuity corresponds to the physical
situation in which the structure is locked: for q between 0◦ and 90◦, stretching in
the Ox1 direction will not cause the structure to go past the point when q = 90◦, as
will be the case when q is between 90◦ and 180◦ for compression, which highlights
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the fact that, as discussed elsewhere (Alderson et al. 1997; Smith et al. 1999),
the expressions for Poisson’s ratios as a function of q should not be treated as
analogous to relationships of Poisson’s ratios with strain.

From equation (2.14), it is important to note that the on-axis Poisson ratios,
n12 and n21 (for orienting the structure as described earlier) are always negative as
a, b, c, d and sin(q) (for 0 < q < 180) are all positive so that the resulting Poisson
ratio is negative.

(b) On-axis Young’s moduli

Young’s moduli of the structure can be derived through an energy-conservation
approach. As we are assuming that the only deformation mechanism is hinging,
the stiffness in the structure is solely due to the stiffness of the q-hinges, which
may be described through the stiffness constant Kh and defined as

w = 1
2Kh dq2, (2.16)

where w is the work done at each hinge in changing the angle q by dq. As there
are four q-hinges in each unit cell, the total work done is

W = 4w = 2Kh dq2. (2.17)

The strain energy due to an infinitesimally small strain d3i in the Oxi direction
is given by

U = 1
2Ei(d3i)2, (2.18)

where Ei is Young’s modulus of the structure along the Oxi direction.
From the principle of conservation of energy,

U = W
V

= 2Kh dq2

V
, (2.19)

where V is the volume of the unit cell given by

V = X11X22z = [ab + cd + sin(q)(ab + cd)]z , (2.20)

and z is the out-of-plane thickness of the rectangles.
By equating the two expressions for U , Young’s moduli are found to be

E1 = 4Khl42V
z2 cos2(q)[ad3 + cb3 + bd sin(q)(ad + cb)]2 (2.21)

and

E2 = 4Khl42
V 2

b d2 cos2(q)
. (2.22)
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(c) On-axis shear strain

As already stated, in general, the unit cell shears upon deformation as the
internal angle a12 is dependent on q. This will result in a shear strain dg, which
can be defined in terms of dq as follows (Grima 2000; Grima et al. 2007b):

dg = 1
X11

[
dX12 −

(
X12

X22

)
dX22

]

= 1
X11

(
cos(a12)

(
dl1
dq

)
− l1 sin(a12)

(
da12

dq

)
− X12

l2

(
dl2
dq

))
dq, (2.23)

where

X12 = l1 cos(a12) and cos(a12) = cos(q)[ad − cb]
l1l2

. (2.24)

Substituting for X11, X12, sin(a12) and cos(a12) in equation (2.23) and
simplifying, the shear strain can be written as

dg = z(cb − ad)
Vl22

[2bd + (b2 + d2) sin(q)] dq. (2.25)

(d) On-axis shear modulus

The shear modulus G12 can be derived using a similar approach used to derive
Young’s modulus. The shear strain energy due to an infinitesimally small shear
strain dg is related to the total energy U stored in the system through the
following equation:

U = 2Kh dq2

V
= 1

2
G12(dg)2, (2.26)

such that the shear modulus may be written as

G12 = 4Khl42V
z2(ad − cb)2[2bd + (b2 + d2) sin(q)]2 . (2.27)

(e) On-axis shear coupling coefficients

The shear coupling coefficients hij (defined by equation (2.8)) are given by

h13 = 1
h31

= (cb − ad)[2bd + (b2 + d2) sin(q)]
cos(q)[ad3 + cb3 + bd sin(q)(ad + cb)]

and h23 = 1
h32

= z(cb − ad)[2bd + (b2 + d2) sin(q)]
Vbd cos(q)

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.28)

(f ) Off-axis properties

The off-axis mechanical properties of the general rotating different-sized
rectangles structure may be computed using standard axis-transformation
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techniques (Nye 1957). In particular, Poisson’s ratio for loading in any arbitrary
direction in the x–y plane (specifically at an angle +x to the x-axis) is given by

n
x
12 =

[
n12 cos4(x)

E1
− cos3(x) sin(x)

(
h32

G12
− h13

E1

)
− cos2(x) sin2(x)

(
1
E1

+ 1
E2

− 1
G12

)

− cos(x) sin3(x)
(

h31

G12
− h23

E2

)
+ n21 sin4(x)

E2

]
E x

1 , (2.29)

where

E x
1 =

[
cos4(x)

E1
+ cos3(x) sin(x)

(
h31

G12
+ h13

E1

)
− cos2(x) sin2(x)

(
n12

E1
+ n21

E2
− 1

G12

)

+ cos(x) sin3(x)
(

h23

E2
+ h32

G12

)
+ sin4(x)

E2

]−1

. (2.30)

3. Discussion

The model presented earlier, which was validated using the Empirical modelling
using dummy atoms (EMUDA) methodology, as described by Grima et al.
(2005c), suggests that the systems presented here can exhibit a wide range of
Poisson’s ratios and moduli, which can be fine-tuned to particular pre-desired
values through careful choice of the geometric parameters a, b, c, d and q. This is
very significant as it provides us with a key to understand better the requirements
for maximizing auxeticity for any particular system.

Let us now present some important observations that apply to the general
model presented here (and hence also to all the special cases discussed in
appendix A of the electronic supplementary material) by discussing in more detail
the significance of equations (2.14) and (2.30) obtained in §2 for the on-axis and
off-axis Poisson ratios of the generalized model. To facilitate the discussion, plots
of Poisson’s ratios for typical systems are plotted in figure 3 (on-axis Poisson’s
ratio n12 versus angle q between rectangles) and in figure 4 (off-axis Poisson’s
ratio n

x
12 versus direction of loading x). In figure 3, a selection of representative

ratios for a : b and c : d was made. These include the ratios 2 : 1, 1 : 2, 3 : 4, 4 : 3,
2 : 3 and 3 : 2. To fully exploit all possible combinations, the ratio a : b : c : d was
considered, and while fixing the ratio for a : b, the ratio for c : d was varied. Note
that if the ratio of a : b is interchanged with that for c : d (i.e. a : b : c : d = 2 : 1 : 3 : 4
and 3 : 4 : 2 : 1), this would result in the same structure, i.e. one would obtain the
same Poisson ratio plots.

Figure 3 clearly illustrates that Poisson’s ratio n12 is always negative for loading
on-axis, irrespective of the size and the degree of openness of the systems.
However, the exact value of Poisson’s ratio will depend on the geometry of the
system. It should also be noted that as n21 = (n12)−1, n21 is also always negative
for all values of q.

Moreover, as q approaches 90◦, the gradient of the curves for n12 against q
(and also n21 against q) approaches zero, resulting in a ‘turning point’ at the
point of the removable discontinuity (q = 90◦), which corresponds to the point
at which the rigid units cease to rotate. Referring to figure 5a, for any value of
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(a) (b) (c)

Fx
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θ

θ
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Q

Figure 5. (a) When q < 90◦, applying a force along the x-axis will result in a component of force
perpendicular to side PQ creating a moment. (b) When q = 90◦, there is no component of the
force perpendicular to side PQ such that the structure is locked and (c) the locked (fully open)
structure.

q other than 90◦, a stress applied along the Ox1 direction will result in a force
component that is perpendicular to the side PQ, resulting in a moment that
causes the rectangular units in the structure to rotate. This is not the case when
q = 90◦ (figure 5b), at which point a stress applied along the Ox1 direction will
result in a force parallel to the edge PQ, and hence there is no force component
perpendicular to side PQ to create a moment. At this instant, the structure is
‘fully open’ and becomes locked (figure 5c), i.e. further tensile loading in the Ox1
direction will not result in any deformation if one assumes that the rectangles are
perfectly rigid (i.e. no other mode of deformation can take place). Thus, loading
in the Ox1 direction will not result in a change in the unit-cell dimensions, a
property which in equations (2.12) and (2.13) is represented by the fact that
there is a factor cos(q) in the numerator of both expressions of d3i , which result
in d3i = 0 when q = 90◦. The same applies when loading in the Ox2 direction.
Moreover, it should be noted that it is still possible for the system to exist at
angles q in the range 90◦ < q ≤ 180◦; however, the transition between the regions
0◦ ≤ q < 90◦ and 90◦ < q ≤ 180◦ requires forcing the rectangles to rotate past this
barrier of q = 90◦ by, for example, rotating one of the rectangles or in some cases
by shearing. Note that at q = 180◦, the system is ‘fully closed’, i.e. the sides of the
rectangles are touching such that unless overlapping of the rectangles is allowed,
q cannot be greater than 180◦.

Figure 3 also confirms that in the region 0◦ ≤ q ≤ 180◦,

— there is just one turning point at 90◦ in the relationship nij = nij(q) and
— the relationship is symmetric about the line q = 90◦.

This means that unless nij = −1 for all q (something that will occur in
the special cases discussed subsequently and in appendix A of the electronic
supplementary material), Poisson’s ratio will be dependent on the value of q
with maximum auxeticity either occurring at the points q = 0◦ and 180◦ or at
q = 90◦, depending on the geometry of the system. In fact, it may be shown that
the nature of the turning point at 90◦ depends on whether ad3 + cb3 is greater
than bd(ab + cd) or smaller. In fact,

— if ad3 + cb3 > bd(ab + cd), then the turning point for n12 versus q is
a minimum turning point, which means that maximum auxeticity (i.e.
a minimum point) for loading in the Ox1 direction occurs as q = 90◦ and
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— if ad3 + cb3 < bd(ab + cd), then the turning point for n12 versus q is a
maximum turning point, which means that minimum auxeticity is obtained
at q = 90◦ and that maximum auxeticity occurs at the boundaries, i.e. at
q = 0◦ and at q = 180◦.

It should also be noted that a maximum turning point for n12 versus q
corresponds to a minimum turning point for n21 versus q since n21 = (n12)−1.
All this suggests that to maximize on-axis auxeticity for loading in the Ox1
direction, the structure must be such that the sides of the rectangles satisfy
ad3 + cb3 < bd(ab + cd). In such cases, the on-axis Poisson ratio n12 can assume
values that are lower than −1. To maximize on-axis auxeticity for loading in
the Ox2 direction, the structure must be such that the sides of the rectangles
satisfy ad3 + cb3 > bd(ab + cd). In such cases, the greater the difference between
the ratios a/b and c/d where b �= d, the greater the auxeticity.

If one looks at the dependence of Poisson’s ratio on the direction of loading,
first of all one should note that for any particular structure, the plot showing
variation of the off-axis Poisson ratio with x at any particular angle q is the
mirror image of the plot for the same structure when the angle is 180◦ − q.
This is to be expected since the systems themselves are also mirror images of
each other. Also the off-axis Poisson ratio is obviously periodic with a period of
180◦. This is because loading at an angle +x is the same as loading at an angle
of x − 180◦.

The plots of the off-axis Poisson ratio n
x
12 against x (figure 4) suggest that

when a/b is almost equal to c/d, Poisson’s ratio n
x
12 is negative for loading at

any off-axis angle, except as q approaches 90◦, in which case, there are both
continuous and asymptotic transitions from negative to positive Poisson ratios
and vice versa. Also interesting is the limiting case where a/b is equal to c/d (i.e.
similar rectangles structure [(bc/d) × b, c × d]), for which as discussed below and
in appendix A of the electronic supplementary material, Poisson’s ratio is equal to
−1 and such a structure is isotropic. As the difference between the values of a/b
and c/d increases, continuous and asymptotic transitions start to be observed at
smaller q. The greater the difference between the ratios a/b and c/d, the smaller
the q, for which both positive Poisson ratios and NPRs are observed. The plots
also suggest that for q closer to 90◦, the range of positive Poisson ratios increases.

Various special cases, which arise from particular combinations of size and
aspect ratios of the rectangles in the generalized model, are presented in
appendix A of the electronic supplementary material, in which we substitute
into and simplify the equations derived in §2 to consider the special case of
systems made from squares of the same size [a × a, a × a] (discussed earlier
by Grima et al. 1999; Grima 2000; Grima & Evans 2000a); rectangles of the
same size of type I [a × b, b × a] and type II [a × b, a × b] (discussed earlier
by Grima et al. 2004, 2005a,b); systems composed of rotating different-sized
squares [a × a, c × c] (figure 6a); systems composed of similar rectangles, where
either a/b = c/d, i.e. structure [(bc/d) × b, c × d] (figure 6d), or a/b = d/c, i.e.
structure [(bd/c) × b, c × d] (figure 6c); systems made of rectangles of dimensions
a × d and c × d [a × d, c × d] (figure 6e) and systems composed of rectangles and
squares, i.e. structure [a × b, d × d] (figure 6b). Animations of these cases are
available in the electronic supplementary material.
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Figure 6. Special cases of the different-sized rotating rectangles structure considered in appendix A
of the electronic supplementary material: (a) rotating different-sized squares [a × a, c × c], (b)
rotating squares and rectangles structure [a × b, d × d], (c) similar rectangles [bd/c × b, c × d],
(d) similar rectangles [bc/d × b, c × d] and (e) rotating different-sized rectangles of dimensions
a × d and c × d; [a × d, c × d] structure. Animations that illustrate how these systems deform
when loading in the Ox1 direction are also supplied (see Anim-6a.gif, Anim-6b.gif, Anim-6c.gif,
Anim-6d.gif and Anim-6e.gif, respectively, in the electronic supplementary material). Dotted line,
UC1; dashed line, UC2.

In the case of the same-sized squares structure [a × a, a × a] and the type II
rectangles [a × b, a × b], Poisson’s ratio is −1 for all values of q (which means that
the Poisson ratio of such a system is strain independent) and for all directions
of loading (which suggest that such structures are isotropic in the plane of the
structure). This is in accordance with previous work (Grima 2000; Grima &
Evans 2000a; Grima et al. 2005a). For the type I [a × b, b × a] rectangles,
the derived equations for the on-axis Poisson ratio complement those derived
by Grima et al. (2004, 2005b), who derived the properties of this system in
a different orientation. The two sets of expressions can be transformed to
one another through standard axis-transformation techniques. Here, one should
highlight the fact that Grima’s earlier derivation had shown that the sign of
Poisson’s ratio in the directions corresponding to the lattice vector when using
UC1 was dependent on the angle between the rectangles, something that is not
found for the orientation used here where the on-axis Poisson ratios are always
negative. This highlights the necessity to examine the anisotropy when looking
for auxeticity.

As noted earlier and as discussed in appendix A of the electronic supplementary
material, when the rectangles are similar in such a way that the ratio of the sides
a/b is equal to c/d, (i.e. [(bc/d) × b, c × d] structure), then such a structure is also
two-dimensionally isotropic with a Poisson ratio equal to −1. Special cases of this
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structure are the type II rectangles and the same-sized and different-sized squares
(the ratio a/b is equal to 1 in these latter cases). In fact, the mechanical properties
of these structures are analogous to that of the ‘parent’ case, i.e. Poisson’s ratio
is −1 and these structures are all isotropic.

Another interesting case is the structure [a × d, c × d]. In this case, the on-axis
Poisson ratio is −1, but such a structure is anisotropic. Note that a special case of
this structure is the type II rectangles (structure [a × b, a × b]), which is isotropic.

Let us now discuss some situations in which the model presented here may
be used. An important observation that applies to the general model presented
here (and hence also to all the special cases discussed in appendix A of
the electronic supplementary material) is that all expressions derived for the
mechanical properties are scale independent since if one lets b = r1a, c = r2a and
d = r3a, then the expression can be re-written in terms of only ri and q. This
means that the deformation mechanism presented here can be implemented at
different scales of structures, ranging from the nano (molecular) scale to the
macroscale, i.e. the model can be used to predict the behaviour of systems
and even design new systems that mimic its geometry and deformation on
a smaller scale. On a nanolevel, the usefulness of these models has already
been pointed out in other work (Ishibashi & Iwata 2000; Grima et al. 2005b,
2006, 2007a,c, 2009b; Williams et al. 2007), in which it has been shown that
these models can explain, predict, as well as quantify, auxeticity in certain
crystalline materials such as a-cristobalite (Grima et al. 2006) and natrolite
(Grima et al. 2007c, 2009b; Williams et al. 2007) for loading in particular
directions. This is possible because the relevant two-dimensional projections
of these crystals have the same geometry as the rotating rectangles/squares
model, and molecular-modelling simulations also suggest that these molecular
systems deform with the same rotating mechanism (Grima et al. 2005b, 2006;
Williams et al. 2007).

However, these earlier models based on rotating squares or rectangles were
somewhat limited because they required all rectangles/squares to be of the
same size. The model presented here has more degrees of freedom, allowing for
variations in the size of adjacent units; therefore, one expects that this model
may be applied to a wider range of materials. For example, it is interesting to
note that at the extremity of having one set of rectangles with a very large aspect
ratio relative to the other, then, as shown in figure 7, the resulting network would
bear resemblance to the mechanisms proposed by He et al. (2005a,b) to explain
auxeticity at the nanolevel in liquid-crystalline polymers. At this extremity,
the model can also be considered as a network of interconnected nodules and
fibrils, which could be of use to model the properties of auxetic microstructured
polymers, which have long been studied through nodule–fibril models (Alderson &
Evans 1995, 1997; Alderson et al. 1998b).

Furthermore, the highly versatile model presented here can be of use to
researchers who may use it as a ‘blueprint’ on which they can design and
synthesize newly ‘designed’ auxetic materials. For example, a direct application
of this work would be as a template for the design and manufacture of perforated
sheets, which exhibit NPR in analogy to the recent work based on squares
(Grima & Gatt 2010). On a microlevel, microstructures based on these models
can be micromachined using techniques such as laser ablation and mechanical
micromachining.
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(a)

(b)

Figure 7. Comparison of the model presented here (a) with that proposed by Griffin et al. (He et al.
2005a,b) to explain auxeticity in liquid-crystalline polymers (b).

Another interesting application of such structures would be the possibility of
using them as tunable filters and sieves. The pore size would be controlled by
the amount of load applied, such that multi-purpose usage could be achieved.
Another advantage of these filters over conventional filters is the fact that these
can be easily unclogged by stretching the filter, thus increasing the lifetime of
such filters.

Before we conclude, it is important to note some possible limitations of this
model (and of other rotating rigid polygons mechanisms in general). Although
it has been stated that such networks can be used to predict the mechanical
properties of crystalline systems whose two-dimensional projections correspond
to the geometry of the systems treated here, one must note that in a real
material, it is very unlikely that the projected rectangles are completely rigid,
and in addition to rotation, other deformation mechanisms such as stretching
may occur concurrently so that the degree of auxeticity would depend on which
deformation mechanism dominates. Furthermore, it should be appreciated that
at the nanolevel, it is not correct to consider the nanostructure of a material as a
purely mechanical system. Thus, at the nanolevel, it is not likely that the extremes
of behaviour predicted by this highly idealized model will be manifested to the
full. For example, it is not expected that any real nanostructured material will
indeed exhibit an infinite shear modulus as predicted by the model of connected
rectangles [a × b, a × b], although some features of the model would still be
present, as, for example, observed in a-cristobalite. Besides, one must also keep in
mind that the model presented here only offers a two-dimensional representation
of three-dimensional systems. In reality, it is the three-dimensional units which
are rotating with the result that projected rectangles in the plane of interest may
change shape as a result of re-orientation of the three-dimensional units. Such
effects are not captured in the model presented here.

4. Conclusion

In this work, the on- and off-axis mechanical properties of a structure made up
of two different-sized rectangles have been derived. It was shown that some of
the systems discussed, in particular, the similar rectangles structure where a/b
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is equal to c/d and the different-sized squares structure, exhibit isotropic and
strain-independent Poisson ratios of −1, whereas some others have Poisson ratios
that are dependent on the shape and relative size of the rectangles, the angle
between the rectangles and also the direction of loading. It was also shown that
since all systems exhibit negative on-axis Poisson ratios, all conformations based
on rotating rectangles of this form are auxetic for loading in certain directions.
We have also shown that this model could be used to elucidate the behaviour
of a wide range of auxetics, ranging from liquid-crystalline polymers to silicates
and zeolites.

Given the many benefits associated with having an NPR and the versatility
of the proposed systems, it is hoped that this model will stimulate further work.
This could, for example, lead to the manufacture of new man-made auxetics,
which mimic the behaviour of the model structure proposed here.
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