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Abstract
Negative compressibility is the ability to expand in at least one dimension rather than
shrinking upon the application of an externally applied hydrostatic pressure. It is shown that,
contrary to current perception, negative linear compressibility may be obtained from re-entrant
hexagonal truss systems of specific geometric features which deform through non-equal
changes in the lengths of the cell walls when deforming through a constrained angle stretching
rather than other modes of deformation (such as flexure or hinging, modes of deformation that
also lead to auxetic behaviour in honeycombs). Negative compressibility is predicted in the
vertical direction for particular re-entrant geometries of this smart hexagonal truss system
when the vertical ribs are much stiffer than the inclined ribs.

(Some figures may appear in colour only in the online journal)

1. Introduction

Cellular honeycombs with hexagonal repeat units in both
their conventional and their re-entrant forms have been
thoroughly studied and analysed in recent years, not only
because such systems can afford some very interesting
macroscopic properties, but also because such honeycomb
systems can have a variety of applications. Some anomalous,
yet highly desirable, macroscopic properties exhibited by
such honeycombs include negative Poisson’s ratio (auxetic
behaviour, i.e. the property of becoming wider rather than
thinner when uniaxially stretched [1–9]) and the property of
negative linear compressibility (i.e. the ability to expand in at
least one dimension rather than shrinking upon the application
of an externally applied hydrostatic pressure [9–21]). Uses
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of such honeycombs are equally diverse and range from
their use in the manufacture of sandwich plates [22] to
reinforcement in network embedded composites [2]. In recent
years, analytical models have been developed to predict
the mechanical behaviour of such cellular systems when
they deform through various mechanisms, which include
flexure, stretching and/or hinging of the cell walls [3–7].
These models can elucidate the necessary conditions for
a system to exhibit the desired property. For example, in
Gibson and Ashby’s pioneering study, it was shown that
for re-entrant honeycombs deforming through flexure of the
cell wall (flexure mechanism), the honeycomb expands in
the lateral direction when uniaxially stretched, i.e. a negative
Poisson’s ratio is observed [3, 4]. On the other hand, for
non re-entrant honeycombs, a negative Poisson’s ratio is
observed if they deform through stretching of the ribs [5, 6].
More recently, it was shown that honeycombs and other

10964-1726/13/084015+07$33.00 c© 2013 IOP Publishing Ltd Printed in the UK & the USA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/83022504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1088/0964-1726/22/8/084015
mailto:joseph.grima@um.edu.mt
mailto:auxetic@um.edu.mt
http://stacks.iop.org/SMS/22/084015
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
http://www.um.edu.mt/science/metamaterials
https://www.researchgate.net/publication/30502971_Modelling_the_effects_of_density_variations_on_the_in-plane_Poisson's_ratios_and_Young's_Moduli_of_periodic_conventional_and_re-entrant_honeycombs_-_Part_1_Rib_thickness_variations?el=1_x_8&enrichId=rgreq-6c2314336b631329a29b6bf93f542b3f-XXX&enrichSource=Y292ZXJQYWdlOzI1MzIzNTEzMTtBUzo5OTc2MTc4MDY5MDk0OEAxNDAwNzk2NDcwMjI3
https://www.researchgate.net/publication/228085677_On_the_transverse_shear_modulus_of_negative_Poisson's_ratio_honeycomb_structures?el=1_x_8&enrichId=rgreq-6c2314336b631329a29b6bf93f542b3f-XXX&enrichSource=Y292ZXJQYWdlOzI1MzIzNTEzMTtBUzo5OTc2MTc4MDY5MDk0OEAxNDAwNzk2NDcwMjI3
https://www.researchgate.net/publication/228085677_On_the_transverse_shear_modulus_of_negative_Poisson's_ratio_honeycomb_structures?el=1_x_8&enrichId=rgreq-6c2314336b631329a29b6bf93f542b3f-XXX&enrichSource=Y292ZXJQYWdlOzI1MzIzNTEzMTtBUzo5OTc2MTc4MDY5MDk0OEAxNDAwNzk2NDcwMjI3
https://www.researchgate.net/publication/6058784_Foam_Structures_With_a_Negative_Poisson's_Ratio?el=1_x_8&enrichId=rgreq-6c2314336b631329a29b6bf93f542b3f-XXX&enrichSource=Y292ZXJQYWdlOzI1MzIzNTEzMTtBUzo5OTc2MTc4MDY5MDk0OEAxNDAwNzk2NDcwMjI3
https://www.researchgate.net/publication/227708334_Negative_compressibility_negative_Poisson's_ratio_and_stability?el=1_x_8&enrichId=rgreq-6c2314336b631329a29b6bf93f542b3f-XXX&enrichSource=Y292ZXJQYWdlOzI1MzIzNTEzMTtBUzo5OTc2MTc4MDY5MDk0OEAxNDAwNzk2NDcwMjI3
https://www.researchgate.net/publication/223159523_Theoretical_Characteristics_of_the_Vibration_of_Sandwich_Plates_with_In-Plane_Negative_Poisson's_Ratio_Values?el=1_x_8&enrichId=rgreq-6c2314336b631329a29b6bf93f542b3f-XXX&enrichSource=Y292ZXJQYWdlOzI1MzIzNTEzMTtBUzo5OTc2MTc4MDY5MDk0OEAxNDAwNzk2NDcwMjI3
https://www.researchgate.net/publication/241701587_Three-dimensional_cellular_structures_with_negative_Poisson's_ratio_and_negative_compressibility_properties?el=1_x_8&enrichId=rgreq-6c2314336b631329a29b6bf93f542b3f-XXX&enrichSource=Y292ZXJQYWdlOzI1MzIzNTEzMTtBUzo5OTc2MTc4MDY5MDk0OEAxNDAwNzk2NDcwMjI3
https://www.researchgate.net/publication/241701593_Negative_linear_compressibility_of_hexagonal_honeycombs_and_related_systems?el=1_x_8&enrichId=rgreq-6c2314336b631329a29b6bf93f542b3f-XXX&enrichSource=Y292ZXJQYWdlOzI1MzIzNTEzMTtBUzo5OTc2MTc4MDY5MDk0OEAxNDAwNzk2NDcwMjI3
https://www.researchgate.net/publication/49826570_Negative_Linear_Compressibility_and_Massive_Anisotropic_Thermal_Expansion_in_Methanol_Monohydrate?el=1_x_8&enrichId=rgreq-6c2314336b631329a29b6bf93f542b3f-XXX&enrichSource=Y292ZXJQYWdlOzI1MzIzNTEzMTtBUzo5OTc2MTc4MDY5MDk0OEAxNDAwNzk2NDcwMjI3
https://www.researchgate.net/publication/229579262_Truss-type_systems_exhibiting_negative_compressibility?el=1_x_8&enrichId=rgreq-6c2314336b631329a29b6bf93f542b3f-XXX&enrichSource=Y292ZXJQYWdlOzI1MzIzNTEzMTtBUzo5OTc2MTc4MDY5MDk0OEAxNDAwNzk2NDcwMjI3
https://www.researchgate.net/publication/250866425_Auxetic_two-dimensional_polymer_networks_An_example_of_tailoring_geometry_for_specific_mechanical_properties?el=1_x_8&enrichId=rgreq-6c2314336b631329a29b6bf93f542b3f-XXX&enrichSource=Y292ZXJQYWdlOzI1MzIzNTEzMTtBUzo5OTc2MTc4MDY5MDk0OEAxNDAwNzk2NDcwMjI3
https://www.researchgate.net/publication/250866425_Auxetic_two-dimensional_polymer_networks_An_example_of_tailoring_geometry_for_specific_mechanical_properties?el=1_x_8&enrichId=rgreq-6c2314336b631329a29b6bf93f542b3f-XXX&enrichSource=Y292ZXJQYWdlOzI1MzIzNTEzMTtBUzo5OTc2MTc4MDY5MDk0OEAxNDAwNzk2NDcwMjI3
https://www.researchgate.net/publication/250866425_Auxetic_two-dimensional_polymer_networks_An_example_of_tailoring_geometry_for_specific_mechanical_properties?el=1_x_8&enrichId=rgreq-6c2314336b631329a29b6bf93f542b3f-XXX&enrichSource=Y292ZXJQYWdlOzI1MzIzNTEzMTtBUzo5OTc2MTc4MDY5MDk0OEAxNDAwNzk2NDcwMjI3
https://www.researchgate.net/publication/248204543_Models_for_the_Elastic_Deformation_of_Honeycombs?el=1_x_8&enrichId=rgreq-6c2314336b631329a29b6bf93f542b3f-XXX&enrichSource=Y292ZXJQYWdlOzI1MzIzNTEzMTtBUzo5OTc2MTc4MDY5MDk0OEAxNDAwNzk2NDcwMjI3
https://www.researchgate.net/publication/248204543_Models_for_the_Elastic_Deformation_of_Honeycombs?el=1_x_8&enrichId=rgreq-6c2314336b631329a29b6bf93f542b3f-XXX&enrichSource=Y292ZXJQYWdlOzI1MzIzNTEzMTtBUzo5OTc2MTc4MDY5MDk0OEAxNDAwNzk2NDcwMjI3
https://www.researchgate.net/publication/248204543_Models_for_the_Elastic_Deformation_of_Honeycombs?el=1_x_8&enrichId=rgreq-6c2314336b631329a29b6bf93f542b3f-XXX&enrichSource=Y292ZXJQYWdlOzI1MzIzNTEzMTtBUzo5OTc2MTc4MDY5MDk0OEAxNDAwNzk2NDcwMjI3


Smart Mater. Struct. 22 (2013) 084015 J N Grima et al

cellular solids deforming through changes in angles between
the cell walls (hinging mechanism) may exhibit the rare
property of negative linear compressibility (NLC) [16, 18].
In the latter case, negative linear compressibility is observed
when certain conditions are satisfied through a mechanism
that is not dissimilar to other main mechanisms known so
far to be responsible for NLC, such as that employed by
Baughman et al to explain the predicted NLC in some carbon
allotropes [10], by Fortes et al to explain the experimentally
measured NLC in methanol monohydrate [15] and by Cairns
et al to explain the giant NLC response measured in the
α-polymorph of zinc dicyanoaurate [19]. These conditions
include the requirement that the system is non-porous, such
that the fluid that is exerting hydrostatic pressure does not
permeate through the ribs of the structure (i.e. the hydrostatic
pressure is exerted on the external sides of the honeycomb),
and that the hexagonal system predominantly deforms, as
wine-rack type structures typically do, through changes in the
angles between the ribs of the structure (idealized hinging
mechanism) rather than, for example, through stretching
of the cell walls in the manner described by Masters and
Evans [6]. In fact, it is currently perceived that mechanisms
that involve fixed-direction stretching of cell walls rather than
changes in the angles subtended between the cell walls nullify
any mechanism-induced NLC properties, something that may
explain why NLC is such a rare property in real materials.

Here, we show that there are no convincing arguments
that prohibit NLC from mechanisms that only involve
constrained angle stretching of cell walls rather than
angle changes and we show that such behaviour may
indeed be obtained from hexagonal truss systems having
particular geometries if the different ribs in the structure are
pre-designed to stretch to different extents (i.e. the ribs have
different stretching stiffness constants).

2. Model

The system modelled here is based on figure 1 and may be
described as an infinitely tessellated hexagonal truss system
having the unit cell as shown in figure 1(a), where l is the
length of the inclined ribs, h is the length of the vertical
ribs and θ is the angle that the inclined ribs make with the
horizontal direction. This angle θ assumes negative values
in the range −90◦ < θ < 0◦ for re-entrant hexagonal truss
systems and positive values in the range 0◦ < θ < 90◦ for non
re-entrant hexagonal truss systems, as defined in figure 1(a),
with the unit cell parameters of the system in the Ox1 and Ox2
directions respectively being given by

X1 = 2l cos(θ) (1)

X2 = 2(h+ l sin(θ)). (2)

Whilst for 0◦ < θ < 90◦, the parameters h and l can assume
values h > 0 and l > 0, for −90◦ < θ < 0◦, one also requires
that

h+ 2l sin(θ) > 0 (3)

so as to ensure that the tips of the system do not overlap
and hence the system is physically realizable as a 2D planar

Figure 1. (a) The unit cell of the honeycomb geometry in its
re-entrant configuration. Differently coloured ribs have different
stretching stiffness constants. The detail shows how the ribs of this
system are considered to be made up (as in [23]). (b) Application of
a hydrostatic pressure exerted on the outside of such a system
deforming through a constrained angle stretching mechanism results
in negative linear compressibility β2 along the Ox2 direction.

structure. Note that the system where 0◦ < θ < 90◦ and h = 0
corresponds to a system with rhombic shaped cells rather than
hexagonal and is termed as a wine-rack system.

It is assumed that the hexagonal truss system deforms in
an idealized manner through constrained angle stretching of
the ribs with the complete exclusion of any other deformation
mode such as flexure or changes in the angles between the
ribs. In other words, the only permissible way in which the
system may deform is through change in length of the cell
ribs, hence the term ‘constrained angle stretching’. Also, it
will be assumed that the hydrostatic pressure is exerted on
the outside of the system, hence if one is exerting a pressure
through means of a fluid, for the presented mechanism to
work, the system has to be non-porous to the fluid particles (as
discussed in [18]). More importantly, it shall also be assumed
that the vertical ribs in the structure are pre-designed to have
a stiffness constant kh

s which is independent of and may be
different from the stiffness constant kl

s of the inclined ribs,
such that the vertical and inclined ribs may stretch to different
extents. Such a model may be considered as a generalized
version of the idealized stretching mechanism as proposed
by Masters and Evans [6] and is based on the mechanism
employed by Wojciechowski and co-workers in their work
on hexagonal systems [23, 12], which can also be used as
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discussed here. The concepts presented in this work may be
implemented by, for example, having a system constructed
from rigid ribs which are attached to a three-slot node by
means of springs such that the ribs can slide in and out of the
aforementioned slots, but cannot change the angle between
them, as in figure 1. Clearly this system could become
unstable when the elongation corresponds to the length of the
slots in which the ribs are placed, i.e. the ribs slide out of
their respective slots. Such unstable scenarios may be easily
avoided by the practical expedient of preventing the ribs from
extending this far.

For the systems discussed here, i.e. ones where
deformations are only through a constrained angle stretching
mechanism, the on-axis strains in the Oxi direction for loading
by an infinitesimally small stress dσj in the Oxj direction may
be defined as

dε[j]i =
1
Xi

[
∂Xi

∂l
dl[j] +

∂Xi

∂h
dh[j]

]
(j = 1, 2) (4)

where dl[j] and dh[j] represent how much the parameters
l and h change when subjected to the stress dσj and can
be expressed in terms of the applied stress dσj through the
stretching stiffness constant as discussed below. Note that the
superscript [j] is used to denote that the stress is applied in the
Oxj direction. Note also that these systems do not shear for
uniaxial loading in the Oxj directions (j = 1, 2), i.e. the shear
coupling coefficients of this system are all equal to zero.

In analogy to Masters and Evans [6], one may define the
stretching stiffness constants to be

F = kx
sδx x = h, l (5)

where δx is the elongation of a rib with length x after being
subjected to a force F along its length. In such cases, the
on-axis strains in the Oxi directions (i = 1, 2) for loading
by an infinitesimally small stress dσ1 in the Ox1 direction
simplify to

dε[1]1 =
1
kl

s
(λ+ sin(θ)) cos(θ)dσ [1] (6)

dε[1]2 =
1
kl

s
sin(θ) cos(θ)dσ [1] (7)

whilst for loading in the Ox2 direction

dε[2]1 =
1
kl

s
sin(θ) cos(θ)dσ [2] (8)

dε[2]2 =
cos(θ)

(λ+ sin(θ))

(
sin2(θ)

kl
s
+

2
kh

s

)
dσ [2]. (9)

Hence, the Young’s moduli Ej for loading in the Oxj direction
are given by

E1 =
dσ [1]

dε[1]1

=
kl

s

cos(θ)(λ+ sin(θ))
(10)

E2 =
dσ [2]

dε[2]2

=
kl

s(λ+ sin(θ))

cos(θ)(2K + sin2(θ))
(11)

whilst Poisson’s ratios νji in the Oxi–Oxj plane for loading in
the Oxj direction are given by

ν12 = −
dε[1]2

dε[1]1

= −

(
sin(θ)

sin(θ)+ λ

)
(12)

ν21 = −
dε[2]1

dε[2]2

= −

(
sin(θ)(λ+ sin(θ))

2K + sin2(θ)

)
(13)

where λ = h/l and K = kl
s/k

h
s is the ratio between the

stretching stiffness constants kl
s and kh

s .
Since this system has zero shear coupling coefficients,

from the compliance matrix of the system, the on-axis linear
compressibility βi in the Oxi direction may be obtained
through the equations

β1 = s11 + s12 =
1

E1
−
ν21

E2
(14)

β2 = s21 + s22 =
1

E2
−
ν12

E1
(15)

which simplify to

β1 =
cos(θ)

kl
s
(λ+ 2 sin(θ)) (16)

β2 =
cos(θ)

kl
s

(
sin(θ)+

2K + sin2(θ)

λ+ sin(θ)

)
. (17)

The area compressibility β12 may then be obtained using the
equation β12 = β1 + β2 [16],

β12 =
cos(θ)

kl
s

(
λ+ 3 sin(θ)+

2K + sin2(θ)

λ+ sin(θ)

)
. (18)

It is worth adding here that using a method based on
differentiation of the free energy by the strain, the same results
were obtained.

3. Results and discussion

Typical plots for the Poisson’s ratios and Young’s moduli
for a ratio K/λ = 0.001 are shown in figure 2 together with
the resultant plots of the linear compressibilities, shown in
figure 3. These plots clearly show not only that negative
Poisson’s ratios (i.e. auxetic behaviour) can be exhibited
by systems where 0◦ < θ < 90◦, which correspond to non
re-entrant systems, but also that NLC along the Ox2 direction
may be obtained from such truss systems in some particular
configurations.

In particular, the equations and plots confirm that for
loading in the Ox1 direction, the Poisson’s ratios and moduli
are in full agreement with what was discussed in earlier work
on such systems [5, 6]. However, the in-plane Poisson’s ratios
and moduli for loading in the Ox2 direction may be better
manipulated in the system presented here, which permits
non-equivalent deformations in the vertical and inclined ribs,
through careful choice of the ratio of the stretching stiffness
constants K.

3
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Figure 2. Plots of (a) Young’s moduli and (b) Poisson’s ratios against θ for systems where kl
s is equal to 10 and K/λ = 0.001. Note that

systems with λ ≈ 0 (i.e. h = 0) correspond to wine-rack structures.

Figure 3. Plots of (a) β1 and (b) β2 against θ for systems where kl
s

is equal to 10 and K/λ = 0.001. Note that systems with λ ≈ 0
(i.e. h = 0) correspond to wine-rack structures.

This difference, which arises due to the ratio between the
stretching stiffness constants in the vertical and inclined ribs,

may also give rise to anomalous compressibility properties. In
fact, from the above equations and plots, it is evident that NLC
can be obtained whenever there is a highly positive Poisson’s
ratio such that νij > Ei/Ej, a condition that can be achieved for
re-entrant hexagonal truss systems made up of ribs of different
stretching stiffness constants deforming solely through a
constrained angle stretching mechanism. The presence and
or absence of NLC may be explained by analysing the
expressions derived above. In fact, with the constraint applied
in order to have a physically realizable structure (equation (3))
and with analysis of equation (16) it is noticeable that under
these conditions, the linear compressibility β1 cannot be
negative, irrespective of the value of the variables h, l or θ ,
since the term (λ+ 2 sin(θ)) is always positive for physically
realizable structures. This, however, is not the case for the
linear compressibility β2, which can achieve negative values
for a range of angles; this range of angles depends on the
ratios K and λ. Here, it should be noted that for negative linear
compressibility β2 to be observed, two conditions need to be
satisfied simultaneously, namely that the range of angles has
to be from −90◦ < θ < 0◦, since sin(θ) < 0 when θ < 0◦,
and the condition that sin(θ) < [ 1

λ+sin(θ) (2K+sin2(θ))]. Thus,
to increase the possible range of values of the angle θ where
NLC is observed by satisfying the latter condition, one may
either decrease the ratio of the stretching stiffness constants K
or else increase the λ ratio (as in figure 3).

It should be emphasized that the above expressions still
fulfil the demand that the overall area compressibility for
physically realizable systems is positive since NLC in the
Ox2 direction is always accompanied by a positive linear

4
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compressibility along the Ox1 direction such that the area
compressibility of the system β12 = β1+β2 is always positive.

In fact, for physically realizable structures where h +
2l sin(θ) > 0 and hence h/l = λ > −2 sin(θ) for the range of
angles θmin < θ < 90◦ where θmin ∈ [−90◦, 0◦], cos(θ) and kl

s
are always positive, hence if any negative area compressibility
β12 is observed, it would have to arise from the term λ +

3 sin(θ)+ 2K+sin2(θ)
λ+sin(θ) of equation (18). However it may easily

be shown that

λ+ 3 sin(θ)+
2K + sin2(θ)

λ+ sin(θ)

=
λ2
+ 4λ sin(θ)+ 2K + 4sin2(θ)

λ+ sin(θ)
. (19)

Since for physically realizable structures λ+2 sin(θ) > 0, then
the denominator term λ+ sin(θ) is always positive since λ >
λ/2 and λ/2+ sin(θ) > 0, i.e. if any negative compressibility
is observed, it would have to arise from the numerator term
λ2
+4λ sin(θ)+2K+4sin2(θ), which is not possible. This can

be shown through the worst case scenario, that is when θ has
the lowest value, i.e. θ = θmin, in which case, using once again
the condition for a physically realizable structure, one may
simplify the numerator term by substituting λ = −2 sin(θmin)

such that

4sin2(θmin)− 8sin2(θmin)+ 2K + 4sin2(θmin)

= 2K > 0. (20)

All this is very significant as it shows, for the first time, that
if hexagonal truss systems are constrained to deform solely
through a constrained angle stretching mechanism where
the vertical ribs deform differently from the inclined ribs,
by controlling the geometric parameters h, l and θ along
with their associated stretching stiffness constants, one can
construct systems that exhibit negative linear compressibility
along the Ox2 direction. This phenomenon could not be
inferred from the earlier models such as those presented
by Masters and Evans [6], as these earlier models did not
permit such independence between kh

s and kl
s and instead they

assumed that all ribs in the system had similar stretching
properties, thus constraining K to assume values of K =
h/l = λ. In such a special case, the generalized mechanical
properties given in equations (10)–(13) become equivalent to
the ones derived by Masters and Evans [6] and it can be shown
that for this case NLC is not observed.

In fact, for the special case when K = h/l = λ (figure 4),
as was the case in Masters and Evans [6], it can be shown
that β2 > 0. In fact, equation (17) simplifies to β2 =
cos(θ)

kl
s
(sin(θ)+ 2λ+sin2(θ)

λ+sin(θ) ). For the range of angles θmin < θ <

90◦ where θmin ∈ [−90◦..0◦], β2 is never negative since the
term cos(θ)/kl

s > 0 and so is the term which is multiplied with
it since

sin(θ)+
2λ+ sin2(θ)

λ+ sin(θ)
=
λ sin(θ)+ 2λ+ 2sin2(θ)

λ+ sin(θ)
. (21)

For physically realizable structures, the term λ + sin(θ)
is always positive, i.e. if any negative compressibility is
observed, it would have to arise from the term λ sin(θ)+2λ+
2sin2(θ), which is not possible since

Figure 4. Plots of (a) β1 and (b) β2 against θ for systems where kl
s

is equal to 10 and K = λ. Note that systems with λ ≈ 0 (i.e. h = 0)
correspond to wine-rack structures.

λ sin(θ)+ 2λ+ 2sin2(θ) = λ(sin(θ)+ 2)

+ 2sin2(θ) > 0. (22)

Using similar arguments, one can show that on increasing
the ratio K, negative linear compressibility along the Ox2
direction is not observed, as illustrated in figure 5.

Furthermore, the equations and plots also show that for
a wine-rack structure (i.e. h = 0) NLC may not be observed
when the structure deforms through the stretching mechanism
discussed in this paper. This is due to the fact that for a
wine-rack structure equation (17) simplifies to

β2 =
2l sin(θ) cos(θ)

kl
s

(23)

and with the constraint given in equation (3) for physically
realizable structures, the resulting β2 is always greater than
zero.

Obviously, it must be noted that the above equations only
apply if the structure deforms solely through a constrained
angle stretching mechanism. In real systems, such stringent
requirements may be difficult to achieve as other concurrent
deformation mechanisms (e.g. flexing of the cell walls or
hinging) may take place. In such cases, a more complex model
which incorporates all these effects would be required for the
system to be modelled in a realistic manner. Also, despite the
fact that a novel mechanism for negative compressibility is
being suggested here, this does not imply that the occurrence
of NLC in non re-entrant hexagonal honeycombs described
elsewhere will be enhanced through the constrained angle
stretching mechanism proposed here. This is due to the fact
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Figure 5. Plots of (a) β1 and (b) β2 against θ for systems where kl
s

is equal to 10 and K/λ = 10 000. Note that systems with λ ≈ 0
(i.e. h = 0) correspond to wine-rack structures.

that the geometries that exhibit NLC with the mechanism
proposed here are not the same geometries that exhibit
NLC in the idealized hinging mechanism (i.e. the NLC in
the case presented here arises from re-entrant geometries
whereas for the hinging mechanism the NLC arises from
non re-entrant geometries). Furthermore, it should be noted
that in real systems, the stringent conditions required here
may be difficult to achieve and a more complex model
which incorporates other deformation modes would be
realistic. Nevertheless, the model presented here would still be
expected to give a good first approximation to the behaviour
of such systems.

It is important to emphasize that the significance of
the result reported here lies not only in the fact that
NLC is a very rare property and it had never been
reported so far from mechanisms of the form discussed
here, but, more importantly, because materials that exhibit
NLC are superior to conventional ones in various practical
and niche applications [9–11, 19–21]. For example, it
is envisaged that the mechanism proposed here may be
of use in practical applications such as in high-pressure
environments typically found in deep oceans. Materials and
systems exhibiting negative compressibility can be superior
to their conventional counterparts in such environments due
to their potential to construct effectively incompressible
structures. Such effectively incompressible structures can
then be used in the manufacture of superior sensors and
in optical telecommunication line systems [10]. Negative
compressibility materials can also be used in extremely
sensitive interferometric pressure sensors which detect
pressure change by measuring changes in the optical path

length (changes that are pressure-induced). On increasing the
hydrostatic pressure on such devices, apart from an increase in
density and hence an increase in their refractive index, volume
compressibility occurs which typically results in a decrease
in size in all directions. Such a decrease in size along the
direction of light propagation results in a less sensitive way
of measuring the change in the optical path length. However,
if one uses materials that exhibit NLC along the direction
of light propagation in such devices, one can improve their
sensitivity since on increasing the pressure, densification still
occurs (and hence a subsequent increase in the refractive
index); however, the optical path length increases, hence the
larger the extent of NLC of the material, the more sensitive
the pressure sensor [10].

Further, before we conclude, it must be mentioned that
although the versatile system discussed in this paper is a
purely mechanical system it can also be engineered in a smart
manner to, for example, replace the mechanical three-slot
node shown in figure 1 to which the ribs are attached by
a means of a micro-electro-mechanical system. This could
permit control of the stretching stiffness constant by means of
electromagnetic components, meaning that the macroscopic
properties could be tuned by electromagnetism, possibly even
remotely, a design which would make the presented system
truly smart.

4. Conclusion

The analytical expressions derived here suggest that
hexagonal truss systems made from ribs having different
stretching stiffness constants can exhibit the rare and
anomalous property of negative linear compressibility along
a certain direction when they deform through a constrained
angle stretching mechanism. The occurrence of such a
property is exhibited when certain conditions are satisfied;
these conditions have been elucidated above. It is hoped
that the model presented here can inspire experimentalists to
design materials and systems based on these concepts which
may serve as a blueprint for the manufacture and design of
man-made materials that exhibit such an anomalous property.
Apart from this, the presented model may also serve to explain
the occurrence of negative linear compressibility in naturally
occurring materials that may be discovered in the future, as
was the case with our earlier model on hinging systems, which
is now known to be one of the more important mechanisms by
which Nature can achieve this effect of NLC [18].
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