193 research outputs found

    A New Microlensing Event in the Doubly-Imaged Quasar Q0957+561

    Full text link
    We present evidence for ultraviolet/optical microlensing in the gravitationally lensed quasar Q0957+561. We combine new measurements from our optical monitoring campaign at the United States Naval Observatory, Flagstaff (USNO) with measurements from the literature and find that the time-delay-corrected r-band flux ratio m_A - m_B has increased by ~0.1 magnitudes over a period of five years beginning in the fall of 2005. We apply our Monte Carlo microlensing analysis procedure to the composite light curves, obtaining a measurement of the optical accretion disk size, log {(r_s/cm)[cos(i)/0.5]^{1/2}} = 16.2^{+0.5}_{-0.6}, that is consistent with the quasar accretion disk size - black hole mass relation.Comment: Replaced with accepted version. Minor adjustments to text but conclusions unchanged. Data in Table 2 have been updated and table now includes additional observation

    The Sun Health Research Institute Brain Donation Program: Description and Eexperience, 1987–2007

    Get PDF
    The Brain Donation Program at Sun Health Research Institute has been in continual operation since 1987, with over 1000 brains banked. The population studied primarily resides in the retirement communities of northwest metropolitan Phoenix, Arizona. The Institute is affiliated with Sun Health, a nonprofit community-owned and operated health care provider. Subjects are enrolled prospectively to allow standardized clinical assessments during life. Funding comes primarily from competitive grants. The Program has made short postmortem brain retrieval a priority, with a 2.75-h median postmortem interval for the entire collection. This maximizes the utility of the resource for molecular studies; frozen tissue from approximately 82% of all cases is suitable for RNA studies. Studies performed in-house have shown that, even with very short postmortem intervals, increasing delays in brain retrieval adversely affect RNA integrity and that cerebrospinal fluid pH increases with postmortem interval but does not predict tissue viability

    Pairing fluctuations and pseudogaps in the attractive Hubbard model

    Full text link
    The two-dimensional attractive Hubbard model is studied in the weak to intermediate coupling regime by employing a non-perturbative approach. It is first shown that this approach is in quantitative agreement with Monte Carlo calculations for both single-particle and two-particle quantities. Both the density of states and the single-particle spectral weight show a pseudogap at the Fermi energy below some characteristic temperature T*, also in good agreement with quantum Monte Carlo calculations. The pseudogap is caused by critical pairing fluctuations in the low-temperature renormalized classical regime ω<T\omega < T of the two-dimensional system. With increasing temperature the spectral weight fills in the pseudogap instead of closing it and the pseudogap appears earlier in the density of states than in the spectral function. Small temperature changes around T* can modify the spectral weight over frequency scales much larger than temperature. Several qualitative results for the s-wave case should remain true for d-wave superconductors.Comment: 20 pages, 12 figure

    Speech Communication

    Get PDF
    Contains table of contents for Part IV, table of contents for Section 1, an introduction, reports on seven research projects and a list of publications.C.J. Lebel FellowshipDennis Klatt Memorial FundNational Institutes of Health Grant T32-DC00005National Institutes of Health Grant R01-DC00075National Institutes of Health Grant F32-DC00015National Institutes of Health Grant R01-DC00266National Institutes of Health Grant P01-DC00361National Institutes of Health Grant R01-DC00776National Science Foundation Grant IRI 89-10561National Science Foundation Grant IRI 88-05680National Science Foundation Grant INT 90-2471

    The immune system and the impact of zinc during aging

    Get PDF
    The trace element zinc is essential for the immune system, and zinc deficiency affects multiple aspects of innate and adaptive immunity. There are remarkable parallels in the immunological changes during aging and zinc deficiency, including a reduction in the activity of the thymus and thymic hormones, a shift of the T helper cell balance toward T helper type 2 cells, decreased response to vaccination, and impaired functions of innate immune cells. Many studies confirm a decline of zinc levels with age. Most of these studies do not classify the majority of elderly as zinc deficient, but even marginal zinc deprivation can affect immune function. Consequently, oral zinc supplementation demonstrates the potential to improve immunity and efficiently downregulates chronic inflammatory responses in the elderly. These data indicate that a wide prevalence of marginal zinc deficiency in elderly people may contribute to immunosenescence
    corecore