294 research outputs found

    A nuclear localization signal targets tail-anchored membrane proteins to the inner nuclear envelope in plants

    Get PDF
    Protein targeting to the inner nuclear membrane (INM) is one of the least understood protein targeting pathways. INM proteins are important for chromatin organization, nuclear morphology and movement, and meiosis, and have been implicated in human diseases. In opisthokonts, one mechanism for INM targeting is transport factor-mediated trafficking, in which nuclear localization signals (NLSs) function in nuclear import of transmembrane proteins. To explore whether this pathway exists in plants, we fused the SV40 NLS to a plant ER tail-anchored protein and showed that the GFP-tagged fusion protein was significantly enriched at the nuclear envelope (NE) of leaf epidermal cells. Airyscan subdiffraction limited confocal microscopy showed that this protein displays a localization consistent with an INM protein. Nine different monopartite and bipartite NLSs from plants and opisthokonts, fused to a chimeric tail-anchored membrane protein, were all sufficient for NE enrichment, and both monopartite and bipartite NLSs were sufficient for trafficking to the INM. Tolerance for different linker lengths and protein conformations suggests that INM trafficking rules might differ from those in opisthokonts. The INM proteins developed here can be used to target new functionalities to the plant nuclear periphery

    Anabolic resistance of muscle protein turnover comes in various shapes and sizes

    Get PDF
    Anabolic resistance is defined by a blunted stimulation of muscle protein synthesis rates (MPS) to common anabolic stimuli in skeletal muscle tissue such as dietary protein and exercise. Generally, MPS is the target of most exercise and feeding interventions as muscle protein breakdown rates seem to be less responsive to these stimuli. Ultimately, the blunted responsiveness of MPS to dietary protein and exercise underpins the loss of the amount and quality of skeletal muscle mass leading to decrements in physical performance in these populations. The increase of both habitual physical activity (including structured exercise that targets general fitness characteristics) and protein dense food ingestion are frontline strategies utilized to support muscle mass, performance, and health. In this paper, we discuss anabolic resistance as a common denominator underpinning muscle mass loss with aging, obesity, and other disease states. Namely, we discuss the fact that anabolic resistance exists as a dimmer switch, capable of varying from higher to lower levels of resistance, to the main anabolic stimuli of feeding and exercise depending on the population. Moreover, we review the evidence on whether increased physical activity and targeted exercise can be leveraged to restore the sensitivity of skeletal muscle tissue to dietary amino acids regardless of the population

    Supercritical biharmonic equations with power-type nonlinearity

    Full text link
    The biharmonic supercritical equation Δ2u=∣u∣p−1u\Delta^2u=|u|^{p-1}u, where n>4n>4 and p>(n+4)/(n−4)p>(n+4)/(n-4), is studied in the whole space Rn\mathbb{R}^n as well as in a modified form with λ(1+u)p\lambda(1+u)^p as right-hand-side with an additional eigenvalue parameter λ>0\lambda>0 in the unit ball, in the latter case together with Dirichlet boundary conditions. As for entire regular radial solutions we prove oscillatory behaviour around the explicitly known radial {\it singular} solution, provided p∈((n+4)/(n−4),pc)p\in((n+4)/(n-4),p_c), where pc∈((n+4)/(n−4),∞]p_c\in ((n+4)/(n-4),\infty] is a further critical exponent, which was introduced in a recent work by Gazzola and the second author. The third author proved already that these oscillations do not occur in the complementing case, where p≄pcp\ge p_c. Concerning the Dirichlet problem we prove existence of at least one singular solution with corresponding eigenvalue parameter. Moreover, for the extremal solution in the bifurcation diagram for this nonlinear biharmonic eigenvalue problem, we prove smoothness as long as p∈((n+4)/(n−4),pc)p\in((n+4)/(n-4),p_c)

    Development and assessment of a 3D tooth morphology quiz for dental students

    Get PDF
    Tooth morphology has a pivotal role in the dental curriculum and provides one of the important foundations of clinical practice. To supplement tooth morphology teaching a three‐dimensional (3D) quiz application (app) was developed. The 3D resource enables students to study tooth morphology actively by selecting teeth from an interactive quiz, modify their viewpoint and level of zoom. Additionally, students are able to rotate the tooth to obtain a 3D spatial understanding of the different surfaces of the tooth. A cross‐over study was designed to allow comparison of students’ results after studying with the new application or traditionally with extracted/model teeth. Data show that the app provides an efficient learning tool and that students’ scores improve with usage (18% increase over three weeks, P < 0.001). Data also show that student assessment scores were correlated with scores obtained while using the app but were not influenced by the teaching modality initially accessed (r2 = 0.175, P < 0.01). Comparison of the 2016 and 2017 class performance shows that the class that had access to the app performed significantly better on their final tooth morphology assessment (68.0% ±15.0 vs. 75.3% ±13.4, P < 0.01). Furthermore, students reported that the 3D application was intuitive, provided useful feedback, presented the key features of the teeth, and assisted in learning tooth morphology. The 3D tooth morphology app thus provides students with a useful adjunct teaching tool for learning dental anatomy

    The cell wall of Arabidopsis thaliana influences actin network dynamics

    Get PDF
    In plant cells, molecular connections link the cell wall–plasma membrane–actin cytoskeleton to form a continuum. It is hypothesized that the cell wall provides stable anchor points around which the actin cytoskeleton remodels. Here we use live cell imaging of fluorescently labelled marker proteins to quantify the organization and dynamics of the actin cytoskeleton and to determine the impact of disrupting connections within the continuum. Labelling of the actin cytoskeleton with green fluorescent protein (GFP)–fimbrin actin-binding domain 2 (FABD2) resulted in a network composed of fine filaments and thicker bundles that appeared as a highly dynamic remodelling meshwork. This differed substantially from the GFP–Lifeact-labelled network that appeared much more sparse with thick bundles that underwent ‘simple movement’, in which the bundles slightly change position, but in such a manner that the structure of the network was not substantially altered during the time of observation. Label-dependent differences in actin network morphology and remodelling necessitated development of two new image analysis techniques. The first of these, ‘pairwise image subtraction’, was applied to measurement of the more rapidly remodelling actin network labelled with GFP–FABD2, while the second, ‘cumulative fluorescence intensity’, was used to measure bulk remodelling of the actin cytoskeleton when labelled with GFP–Lifeact. In each case, these analysis techniques show that the actin cytoskeleton has a decreased rate of bulk remodelling when the cell wall–plasma membrane–actin continuum is disrupted either by plasmolysis or with isoxaben, a drug that specifically inhibits cellulose deposition. Changes in the rate of actin remodelling also affect its functionality, as observed by alteration in Golgi body motility

    Rapidly Decaying Supernova 2010X: A Candidate ".Ia" Explosion

    Full text link
    We present the discovery, photometric and spectroscopic follow-up observations of SN 2010X (PTF 10bhp). This supernova decays exponentially with tau_d=5 days, and rivals the current recordholder in speed, SN 2002bj. SN 2010X peaks at M_r=-17mag and has mean velocities of 10,000 km/s. Our light curve modeling suggests a radioactivity powered event and an ejecta mass of 0.16 Msun. If powered by Nickel, we show that the Nickel mass must be very small (0.02 Msun) and that the supernova quickly becomes optically thin to gamma-rays. Our spectral modeling suggests that SN 2010X and SN 2002bj have similar chemical compositions and that one of Aluminum or Helium is present. If Aluminum is present, we speculate that this may be an accretion induced collapse of an O-Ne-Mg white dwarf. If Helium is present, all observables of SN 2010X are consistent with being a thermonuclear Helium shell detonation on a white dwarf, a ".Ia" explosion. With the 1-day dynamic-cadence experiment on the Palomar Transient Factory, we expect to annually discover a few such events.Comment: 6 pages, 5 figures; Minor Changes; Note correction in Fig 4 caption; published by ApJ

    Elucidating connections between the strigolactone biosynthesis pathway, flavonoid production and root system architecture in Arabidopsis thaliana

    Get PDF
    Strigolactones (SLs) are the most recently discovered phytohormones, and their roles in root architecture and metabolism are not fully understood. Here, we investigated four MORE AXILLARY GROWTH (MAX) SL mutants in Arabidopsis thaliana, max3-9, max4-1, max1-1 and max2-1, as well as the SL receptor mutant d14-1 and karrikin receptor mutant kai2-2. By characterising max2-1 and max4-1, we found that variation in SL biosynthesis modified multiple metabolic pathways in root tissue, including that of xyloglucan, triterpenoids, fatty acids and flavonoids. The transcription of key flavonoid biosynthetic genes, including TRANSPARENT TESTA4 (TT4) and TRANSPARENT TESTA5 (TT5) was downregulated in max2 roots and seedlings, indicating that the proposed MAX2 regulation of flavonoid biosynthesis has a widespread effect. We found an enrichment of BRI1-EMS-SUPPRESSOR 1 (BES1) targets amongst genes specifically altered in the max2 mutant, reflecting that the regulation of flavonoid biosynthesis likely occurs through the MAX2 degradation of BES1, a key brassinosteroid-related transcription factor. Finally, flavonoid accumulation decreased in max2-1 roots, supporting a role for MAX2 in regulating both SL and flavonoid biosynthesis

    The Beetle Tree of Life Reveals that Coleoptera Survived End-Permium Mass Extinction to Diversify During the Cretaceous Terrestrial Revolution

    Get PDF
    Here we present a phylogeny of beetles (Insecta: Coleoptera) based on DNA sequence data from eight nuclear genes, including six single-copy nuclear protein-coding genes, for 367 species representing 172 of 183 extant families. Our results refine existing knowledge of relationships among major groups of beetles. Strepsiptera was confirmed as sister to Coleoptera and each of the suborders of Coleoptera was recovered as monophyletic. Interrelationships among the suborders, namely Polyphaga (Adephaga (Archostemata, Myxophaga)), in our study differ from previous studies. Adephaga comprised two clades corresponding to Hydradephaga and Geadephaga. The series and superfamilies of Polyphaga were mostly monophyletic. The traditional Cucujoidea were recovered in three distantly related clades. Lymexyloidea was recovered within Tenebrionoidea. Several of the series and superfamilies of Polyphaga received moderate to maximal clade support in most analyses, for example Buprestoidea, Chrysomeloidea, Coccinelloidea, Cucujiformia, Curculionoidea, Dascilloidea, Elateroidea, Histeroidea and Hydrophiloidea. However, many of the relationships within Polyphaga lacked compatible resolution under maximum-likelihood and Bayesian inference, and/or lacked consistently strong nodal support. Overall, we recovered slightly younger estimated divergence times than previous studies for most groups of beetles. The ordinal split between Coleoptera and Strepsiptera was estimated to have occurred in the Early Permian. Crown Coleoptera appeared in the Late Permian, and only one or two lineages survived the end-Permian mass extinction, with stem group representatives of all four suborders appearing by the end of the Triassic. The basal split in Polyphaga was estimated to have occurred in the Triassic, with the stem groups of most series and superfamilies originating during the Triassic or Jurassic. Most extant families of beetles were estimated to have Cretaceous origins. Overall, Coleoptera experienced an increase in diversification rate compared to the rest of Neuropteroidea. Furthermore, 10 family-level clades, all in suborder Polyphaga, were identified as having experienced significant increases in diversification rate. These include most beetle species with phytophagous habits, but also several groups not typically or primarily associated with plants. Most of these groups originated in the Cretaceous, which is also when a majority of the most species-rich beetle families first appeared. An additional 12 clades showed evidence for significant decreases in diversification rate. These clades are species-poor in the Modern fauna, but collectively exhibit diverse trophic habits. The apparent success of beetles, as measured by species numbers, may result from their associations with widespread and diverse substrates – especially plants, but also including fungi, wood and leaf litter – but what facilitated these associations in the first place or has allowed these associations to flourish likely varies within and between lineages. Our results provide a uniquely well-resolved temporal and phylogenetic framework for studying patterns of innovation and diversification in Coleoptera, and a foundation for further sampling and resolution of the beetle tree of life

    Reduction of mitomycin C is catalysed by human recombinant NRH:quinone oxidoreductase 2 using reduced nicotinamide adenine dinucleotide as an electron donating co-factor

    Get PDF
    NRH:Quinone Oxidoreductase 2 (NQO2) has been described as having no enzymatic activity with nicotinamide adenine dinucleotide (NADH) or NADPH as electron donating cosubstrates. Mitomycin C (MMC) is both a substrate for and a mechanistic inhibitor of the NQO2 homologue NQO1. NRH:quinone oxidoreductase 2 catalysed the reduction of MMC at pH 5.8 with NADH as a co-factor. This reaction results in species that inhibit the NQO2-mediated metabolism of CB1954. In addition, MMC caused an increase in DNA cross-links in a cell line transfected to overexpress NQO2 to an extent comparable to that observed with an isogenic NQO1-expressing cell line. These data indicate that NQO2 may contribute to the metabolism of MMC to cytotoxic species

    The Beetle Tree of Life  Reveals the Order Coleoptera Survived End Permain Mass Extinction to Diversify During the Cretaceous Terrestrial Revolution

    Get PDF
    Here we present a phylogeny of beetles (Insecta: Coleoptera) based on DNA sequence data from eight nuclear genes, including six single-copy nuclear protein-coding genes, for 367 species representing 172 of 183 extant families. Our results refine existing knowledge of relationships among major groups of beetles. Strepsiptera was confirmed as sister to Coleoptera and each of the suborders of Coleoptera was recovered as monophyletic. Interrelationships among the suborders, namely Polyphaga (Adephaga (Archostemata, Myxophaga)), in our study differ from previous studies. Adephaga comprised two clades corresponding to Hydradephaga and Geadephaga. The series and superfamilies of Polyphaga were mostly monophyletic. The traditional Cucujoidea were recovered in three distantly related clades. Lymexyloidea was recovered within Tenebrionoidea. Several of the series and superfamilies of Polyphaga received moderate to maximal clade support in most analyses, for example Buprestoidea, Chrysomeloidea, Coccinelloidea, Cucujiformia, Curculionoidea, Dascilloidea, Elateroidea, Histeroidea and Hydrophiloidea. However, many of the relationships within Polyphaga lacked compatible resolution under maximum-likelihood and Bayesian inference, and/or lacked consistently strong nodal support. Overall, we recovered slightly younger estimated divergence times than previous studies for most groups of beetles. The ordinal split between Coleoptera and Strepsiptera was estimated to have occurred in the Early Permian. Crown Coleoptera appeared in the Late Permian, and only one or two lineages survived the end-Permian mass extinction, with stem group representatives of all four suborders appearing by the end of the Triassic. The basal split in Polyphaga was estimated to have occurred in the Triassic, with the stem groups of most series and superfamilies originating during the Triassic or Jurassic. Most extant families of beetles were estimated to have Cretaceous origins. Overall, Coleoptera experienced an increase in diversification rate compared to the rest of Neuropteroidea. Furthermore, 10 family-level clades, all in suborder Polyphaga, were identified as having experienced significant increases in diversification rate. These include most beetle species with phytophagous habits, but also several groups not typically or primarily associated with plants. Most of these groups originated in the Cretaceous, which is also when a majority of the most species-rich beetle families first appeared. An additional 12 clades showed evidence for significant decreases in diversification rate. These clades are species-poor in the Modern fauna, but collectively exhibit diverse trophic habits. The apparent success of beetles, as measured by species numbers, may result from their associations with widespread and diverse substrates - especially plants, but also including fungi, wood and leaf litter - but what facilitated these associations in the first place or has allowed these associations to flourish likely varies within and between lineages. Our results provide a uniquely well-resolved temporal and phylogenetic framework for studying patterns of innovation and diversification in Coleoptera, and a foundation for further sampling and resolution of the beetle tree of life.Facultad de Ciencias Naturales y Muse
    • 

    corecore