946 research outputs found

    Coronary artery endothelial dysfunction is positively correlated with low density lipoprotein and inversely correlated with high density lipoprotein subclass particles measured by nuclear magnetic resonance spectroscopy.

    Get PDF
    OBJECTIVE: The association between cholesterol and endothelial dysfunction remains controversial. We tested the hypothesis that lipoprotein subclasses are associated with coronary endothelial dysfunction. METHODS AND RESULTS: Coronary endothelial function was assessed in 490 patients between November 1993 and February 2007. Fasting lipids and nuclear magnetic resonance (NMR) lipoprotein particle subclasses were measured. There were 325 females and 165 males with a mean age of 49.8+/-11.6 years. Coronary endothelial dysfunction (epicardial constriction>20% or increase in coronary blood flow<50% in response to intracoronary acetylcholine) was diagnosed in 273 patients, the majority of whom (64.5%) had microvascular dysfunction. Total cholesterol and LDL-C (low density lipoprotein cholesterol) were not associated with endothelial dysfunction. One-way analysis and multivariate methods adjusting for age, gender, diabetes, hypertension and lipid-lowering agent use were used to determine the correlation between lipoprotein subclasses and coronary endothelial dysfunction. Epicardial endothelial dysfunction was significantly correlated with total (p=0.03) and small LDLp (LDL particles) (p<0.01) and inversely correlated with total and large HDLp (high density lipoprotein particles) (p<0.01). CONCLUSIONS: Epicardial, but not microvascular, coronary endothelial dysfunction was associated directly with LDL particles and inversely with HDL particles, suggesting location-dependent impact of lipoprotein particles on the coronary circulation

    Inducible nitric oxide synthase, Nos2, does not mediate optic neuropathy and retinopathy in the DBA/2J glaucoma model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitric oxide synthase 2 (NOS2) contributes to neural death in some settings, but its role in glaucoma remains controversial. NOS2 is implicated in retinal ganglion cell degeneration in a rat glaucoma model in which intraocular pressure (IOP) is experimentally elevated by blood vessel cauterization, but not in a rat glaucoma model where IOP was elevated by injection of hypertonic saline. To test the importance of NOS2 for an inherited glaucoma, in this study we both genetically and pharmacologically decreased NOS2 activity in the DBA/2J mouse glaucoma model.</p> <p>Methods</p> <p>The expression of <it>Nos2 </it>in the optic nerve head was analyzed at both the RNA and protein levels at different stages of disease pathogenesis. To test the involvement of <it>Nos2 </it>in glaucomatous neurodegeneration, a null allele of <it>Nos2 </it>was backcrossed into DBA/2J mice and the incidence and severity of glaucoma was assessed in mice of each <it>Nos2 </it>genotype. Additionally, DBA/2J mice were treated with the NOS2 inhibitor aminoguanidine and the disease compared to untreated mice.</p> <p>Results</p> <p>Optic nerve head <it>Nos2 </it>RNA levels varied and increased during moderate but decreased at early and severe stages of disease. Despite the presence of a few NOS2 positive cells in the optic nerve head, NOS2 protein was not substantially increased during the glaucoma. Genetic deficiency of <it>Nos2 </it>or aminoguanidine treatment did not alter the IOP profile of DBA/2J mice. Additionally, neither <it>Nos2 </it>deficiency nor aminoguanidine had any detectable affect on the glaucomatous optic nerve damage.</p> <p>Conclusion</p> <p>Glaucomatous neurodegeneration in DBA/2J mice does not require NOS2 activity. Further experiments involving various models are needed to assess the general importance of <it>Nos2 </it>in glaucoma.</p

    A Wireless Multi-Channel Recording System for Freely Behaving Mice and Rats

    Get PDF
    To understand the neural basis of behavior, it is necessary to record brain activity in freely moving animals. Advances in implantable multi-electrode array technology have enabled researchers to record the activity of neuronal ensembles from multiple brain regions. The full potential of this approach is currently limited by reliance on cable tethers, with bundles of wires connecting the implanted electrodes to the data acquisition system while impeding the natural behavior of the animal. To overcome these limitations, here we introduce a multi-channel wireless headstage system designed for small animals such as rats and mice. A variety of single unit and local field potential signals were recorded from the dorsal striatum and substantia nigra in mice and the ventral striatum and prefrontal cortex simultaneously in rats. This wireless system could be interfaced with commercially available data acquisition systems, and the signals obtained were comparable in quality to those acquired using cable tethers. On account of its small size, light weight, and rechargeable battery, this wireless headstage system is suitable for studying the neural basis of natural behavior, eliminating the need for wires, commutators, and other limitations associated with traditional tethered recording systems

    Susceptibility to Neurodegeneration in a Glaucoma Is Modified by Bax Gene Dosage

    Get PDF
    In glaucoma, harmful intraocular pressure often contributes to retinal ganglion cell death. It is not clear, however, if intraocular pressure directly insults the retinal ganglion cell axon, the soma, or both. The pathways that mediate pressure-induced retinal ganglion cell death are poorly defined, and no molecules are known to be required. DBA/2J mice deficient in the proapoptotic molecule BCL2-associated X protein (BAX) were used to investigate the roles of BAX-mediated cell death pathways in glaucoma. Both Bax (+/−) and Bax (−/−) mice were protected from retinal ganglion cell death. In contrast, axonal degeneration was not prevented in either Bax (+/−) or Bax (−/−) mice. While BAX deficiency did not prevent axonal degeneration, it did slow axonal loss. Additionally, we compared the effects of BAX deficiency on the glaucoma to its effects on retinal ganglion cell death due to two insults that are proposed to participate in glaucoma. As in the glaucoma, BAX deficiency protected retinal ganglion cells after axon injury by optic nerve crush. However, it did not protect retinal ganglion cells from N-methyl-D-aspartate (NMDA)-induced excitotoxicity. BAX is required for retinal ganglion cell death in an inherited glaucoma; however, it is not required for retinal ganglion cell axon degeneration. This indicates that distinct somal and axonal degeneration pathways are active in this glaucoma. Finally, our data support a role for optic nerve injury but not for NMDA receptor-mediated excitotoxicity in this glaucoma. These findings indicate a need to understand axon-specific degeneration pathways in glaucoma, and they suggest that distinct somal and axonal degeneration pathways may need to be targeted to save vision

    Simultaneous neutron powder diffraction and microwave dielectric studies of ammonia absorption in metal-organic framework systems

    Get PDF
    Thanks to EPSRC for funding Michael Barter and to STFC ISIS Neutron and Muon Spallation facility for funding Michael Barter and for funding this research. RSF thanks the Royal Society for receipt of a University Research Fellowship, and the University of Glasgow for funding.Ammonia absorption has been investigated in metal-organic frameworks (UiO-67, HKUST-1 and CPO-27-Co) using custom-built apparatus that allows simultaneous neutron powder diffraction (NPD), microwave dielectric characterisation and out-gas mass spectroscopy of solid-state materials during ammonia adsorption. Deuterated ammonia was flowed through the sample and absorption monitored using mass flow meters and mass spectroscopy. Argon gas was then flowed through the ammoniated sample to cause ammonia desorption. Changes in structure found from NPD measurements were compared to changes in dielectric characteristics to differentiate physisorbed and metal-coordinated ammonia, as well as determine decomposition of sample materials. The results of these studies allow the identification of materials with useful ammonia storage properties and provides a new metric for the measurement of gas absorption within mesoporous solids.Publisher PDFPeer reviewe

    An Abundant Dysfunctional Apolipoprotein A1 in Human Atheroma

    Get PDF
    Recent studies have indicated that high-density lipoproteins (HDLs) and their major structural protein, apolipoprotein A1 (apoA1), recovered from human atheroma are dysfunctional and are extensively oxidized by myeloperoxidase (MPO). In vitro oxidation of either apoA1 or HDL particles by MPO impairs their cholesterol acceptor function. Here, using phage display affinity maturation, we developed a high-affinity monoclonal antibody that specifically recognizes both apoA1 and HDL that have been modified by the MPO-H2O2-Cl− system. An oxindolyl alanine (2-OH-Trp) moiety at Trp72 of apoA1 is the immunogenic epitope. Mutagenesis studies confirmed a critical role for apoA1 Trp72 in MPO-mediated inhibition of the ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol acceptor activity of apoA1 in vitro and in vivo. ApoA1 containing a 2-OH-Trp72 group (oxTrp72-apoA1) is in low abundance within the circulation but accounts for 20% of the apoA1 in atherosclerosis-laden arteries. OxTrp72-apoA1 recovered from human atheroma or plasma is lipid poor, virtually devoid of cholesterol acceptor activity and demonstrated both a potent proinflammatory activity on endothelial cells and an impaired HDL biogenesis activity in vivo. Elevated oxTrp72-apoA1 levels in subjects presenting to a cardiology clinic (n = 627) were associated with increased cardiovascular disease risk. Circulating oxTrp72-apoA1 levels may serve as a way to monitor a proatherogenic process in the artery wall

    A qualitative analysis exploring preferred methods of peer support to encourage adherence to a Mediterranean diet in a Northern European population at high risk of cardiovascular disease.

    Get PDF
    BACKGROUND: Epidemiological and randomised controlled trial evidence demonstrates that adherence to a Mediterranean diet (MD) can reduce cardiovascular disease (CVD) risk. However, methods used to support dietary change have been intensive and expensive. Peer support has been suggested as a possible cost-effective method to encourage adherence to a MD in at risk populations, although development of such a programme has not been explored. The purpose of this study was to use mixed-methods to determine the preferred peer support approach to encourage adherence to a MD. METHODS: Qualitative (focus groups) and quantitative methods (questionnaire and preference scoring sheet) were used to determine preferred methods of peer support. Sixty-seven high CVD risk participants took part in 12 focus groups (60% female, mean age 64 years) and completed a questionnaire and preference scoring sheet. Focus group data were transcribed and thematically analysed. RESULTS: The mean preference score (1 being most preferred and 5 being least preferred) for group support was 1.5, compared to 3.4 for peer mentorship, 4.0 for telephone peer support and 4.0 for internet peer support. Three key themes were identified from the transcripts: 1. Components of an effective peer support group: discussions around group peer support were predominantly positive. It was suggested that an effective group develops from people who consider themselves similar to each other meeting face-to-face, leading to the development of a group identity that embraces trust and honesty. 2. Catalysing Motivation: participants discussed that a group peer support model could facilitate interpersonal motivations including encouragement, competitiveness and accountability. 3. Stepping Stones of Change: participants conceptualised change as a process, and discussed that, throughout the process, different models of peer support might be more or less useful. CONCLUSION: A group-based approach was the preferred method of peer support to encourage a population at high risk of CVD to adhere to a MD. This finding should be recognised in the development of interventions to encourage adoption of a MD in a Northern European population

    Drug Discovery Using Chemical Systems Biology: Identification of the Protein-Ligand Binding Network To Explain the Side Effects of CETP Inhibitors

    Get PDF
    Systematic identification of protein-drug interaction networks is crucial to correlate complex modes of drug action to clinical indications. We introduce a novel computational strategy to identify protein-ligand binding profiles on a genome-wide scale and apply it to elucidating the molecular mechanisms associated with the adverse drug effects of Cholesteryl Ester Transfer Protein (CETP) inhibitors. CETP inhibitors are a new class of preventive therapies for the treatment of cardiovascular disease. However, clinical studies indicated that one CETP inhibitor, Torcetrapib, has deadly off-target effects as a result of hypertension, and hence it has been withdrawn from phase III clinical trials. We have identified a panel of off-targets for Torcetrapib and other CETP inhibitors from the human structural genome and map those targets to biological pathways via the literature. The predicted protein-ligand network is consistent with experimental results from multiple sources and reveals that the side-effect of CETP inhibitors is modulated through the combinatorial control of multiple interconnected pathways. Given that combinatorial control is a common phenomenon observed in many biological processes, our findings suggest that adverse drug effects might be minimized by fine-tuning multiple off-target interactions using single or multiple therapies. This work extends the scope of chemogenomics approaches and exemplifies the role that systems biology has in the future of drug discovery

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of ttt\overline{t}, W+bbW+b\overline{b} and W+ccW+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays WνW\rightarrow\ell\nu, where \ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions
    corecore