731 research outputs found

    Monitoring of Orientation in Molecular Ensembles by Polarization Sensitive Nonlinear Microscopy

    Full text link
    We present high resolution two-photon excitation microscopy studies combining two-photon fluorescence (TPF) and second harmonic generation (SHG) in order to probe orientational distributions of molecular ensembles at room temperature. A detailed polarization analysis of TPF and SHG signals is used in order to unravel the parameters of the molecular orientational statistical distribution, using a technique which can be extended and generalized to a broad variety of molecular arrangements. A polymer film containing molecules active for TPF and/or SHG emission is studied as a model system. Polarized TPF is shown to provide information on specific properties pertaining to incoherent emission in molecular media, such as excitation transfer. SHG, being highly sensitive to a slight departure from centrosymmetry such as induced by an external electric field in the medium, complements TPF. The response of each signal to a variable excitation polarization allows investigation of molecular behavior in complex environments which affect their orientations and interactions.Comment: submitted April 9th, 2003 to J. Phys. Chem.

    ARPES view of orbitally resolved quasiparticle lifetimes in iron pnictides

    Full text link
    We study with ARPES the renormalization and quasiparticle lifetimes of the dxyd_{xy} and dxzd_{xz}/dyzd_{yz} orbitals in two iron pnictides, LiFeAs and Ba(Fe0.92_{0.92}Co0.08_{0.08})2_2As2_2 (Co8). We find that both quantities depend on orbital character rather than on the position on the Fermi Surface (for example hole or electron pocket). In LiFeAs, the renormalizations are larger for dxyd_{xy}, while they are similar on both types of orbitals in Co8. The most salient feature, which proved robust against all the ARPES caveats we could think of, is that the lifetimes for dxyd_{xy} exhibit a markedly different behavior than those for dxzd_{xz}/dyzd_{yz}. They have smaller values near EFE_F and exhibit larger ω\omega and temperature dependences. While the behavior of dxyd_{xy} is compatible with a Fermi liquid description, it is not the case for dxzd_{xz}/dyzd_{yz}. This situation should have important consequences for the physics of iron pnictides, which have not been considered up to now. More generally, it raises interesting questions on how a Fermi liquid regime can be established in a multiband system with small effective bandwidths

    Nanoindentation cartography in Al/Al-Cu-Fe composites: Correlation between chemical heterogeneities and mechanical properties

    Get PDF
    During the last two decades, nanoindentation testing has become a commonly used technique for measuring surface mechanical properties such as hardness or elastic modulus. With devices equipped with a motorized X-Y table, it is now possible to perform large regular nanoindentation arrays in order to make an accurate statistics of the mechanical properties. This method is particularly interesting to study heterogeneous materials. The statistical analysis, associated to mathematical deconvolution methods allows identifying the properties of each individual phase. Furthermore, hardness or elastic modulus maps can be then established and compared to other local properties such as microstructure, crystallographic orientation or chemical composition. The nanoindentation cartography method has been used to study the mechanical properties of a metal matrix composite (Aluminum matrix with ω-Al-Cu-Fe reinforcement particles, synthesized by sparking plasma sintering) (cf. figure 1). Emphasize has been placed on the Aluminum matrix properties, where the detailed analysis of the individual nanoindentation curves shows serrated behavior characteristic of Portevin-Le Chatelier effect associated to dislocation pinning by solute atoms. The comparison between chemical (SEM – EDXS analysis) and hardness maps as well as the quantitative analysis of the deformation curves gives evidence of a strong correlation between the chemical heterogeneities and mechanical properties of the Aluminum matrix

    A Bacteriophage-Acquired O-Antigen Polymerase (Wzy<sub>β</sub>) from <i>P. aeruginosa </i>Serotype O16 Performs a Varied Mechanism Compared to Its Cognate Wzy<sub>α</sub>

    Get PDF
    Pseudomonas aeruginosa is a Gram-negative bacterium that produces highly varied lipopolysaccharide (LPS) structures. The O antigen (O-Ag) in the LPS is synthesized through the Wzx/Wzy-dependent pathway where lipid-linked O-Ag repeats are polymerized by Wzy. Horizontal-gene transfer has been associated with O-Ag diversity. The O-Ag present on the surface of serotypes O5 and O16, differ in the intra-molecular bonds, α and β, respectively; the latter arose from the action of three genes in a seroconverting unit acquired from bacteriophage D3, including a β-polymerase (Wzyβ). To further our understanding of O-polymerases, the inner membrane (IM) topology of Wzyβ was determined using a dual phoA-lacZα reporter system wherein random 3’ gene truncations were localized to specific loci with respect to the IM by normalized reporter activities as determined through the ratio of alkaline phosphate activity to β-galactosidase activity. The topology of Wzyβ developed through this approach was shown to contain two predominant periplasmic loops, PL3 (containing an RX10G motif) and PL4 (having an O-Ag ligase superfamily motif), associated with inverting glycosyltransferase reaction. Through site-directed mutagenesis and complementation assays, residues Arg254, Arg270, Arg272 and His300 were found to be essential for Wzyβ function. Additionally, like-charge substitutions, R254K and R270K, could not complement the wzyβ knockout, highlighting the essential guanidium side group of Arg residues. The O-Ag ligase domain is conserved among heterologous Wzy proteins that produce β-linked O-Ag repeat units. Taking advantage of the recently obtained whole-genome sequence of serotype O16 a candidate promoter was identified. Wzyβ under its native promoter was integrated in the PAO1 genome, which resulted in simultaneous production of α- and β-linked O-Ag. These observations established that members of Wzy-like family consistently exhibit a dual-periplasmic loops topology, and identifies motifs that are plausible to be involved in enzymatic activities. Based on these results, the phage-derived Wzyβ utilizes a different reaction mechanism in the P. aeruginosa host to avoid self-inhibition during serotype conversion

    Towards a Harmonised Total Diet Study Approach: a guidance document:joint guidance of EFSA, FAO and WHO

    Get PDF
    A Total Diet Study (TDS) can be a complementary approach to traditional monitoring and surveillance programs, which instead of focusing on compliance is designed to provide a solid basis for calculating population dietary exposure and assessing potential impact on public health. A TDS includes the selection of foods based on food consumption data to represent a large portion of a typical diet, their preparation to food as consumed and the subsequent pooling of related foods before analysis. There is already a wealth of international TDS data available, but to better enable comparisons it is important that methods are harmonised to the extent possible. The Working Group of experts provides a definition of the TDS approach highlighting its inherent value; it gives guidance for a harmonised methodology starting from the TDS planning to the collection of analytical results, exposure assessment calculation and communication of TDS results; and it proposes a general approach to facilitate the use of TDS information at international level. A TDS can be used for screening purposes or as a more refined exposure assessment tool. It provides background concentration and exposure levels of chemical substances in a range of representative foods prepared for consumption, while monitoring and surveillance programs can better capture highly contaminated individual food items. Their complementarities would allow the identification of the relative importance of individual sources of chemical substances from the whole diet. In conclusion, a TDS is considered to be a good complement to existing food monitoring or surveillance programs to estimate population dietary exposure to beneficial and harmful chemical substances across the entire diet. Harmonising the TDS methodology will enhance the value of these programs by improving the comparability at international level

    Herschel Observations of Major Merger Pairs at z=0: Dust Mass and Star Formation

    Get PDF
    We present Herschel PACS and SPIRE far-infrared (FIR) and submillimeter imaging observations for a large K-band selected sample of 88 close major-merger pairs of galaxies (H-KPAIRs) in 6 photometric bands (70, 100, 160, 250, 350, and 500 μm). Among 132 spiral galaxies in the 44 spiral–spiral (S+S) pairs and 44 spiral–elliptical (S+E) pairs, 113 are detected in at least 1 Herschel band. The star formation rate (SFR) and dust mass (M_(dust)) are derived from the IR SED fitting. The mass of total gas (M_(gas)) is estimated by assuming a constant dust-to-gas mass ratio of 0.01. Star-forming spiral galaxies (SFGs) in S+S pairs show significant enhancements in both specific star formation rate (sSFR) and star formation efficiency (SFE), while having nearly the same gas mass compared to control galaxies. On the other hand, for SFGs in S+E pairs, there is no significant sSFR enhancement and the mean SFE enhancement is significantly lower than that of SFGs in S+S pairs. This suggests an important role for the disk–disk collision in the interaction-induced star formation. The M_(gas) of SFGs in S+E pairs is marginally lower than that of their counterparts in both S+S pairs and the control sample. Paired galaxies with and without interaction signs do not differ significantly in their mean sSFR and SFE. As found in previous works, this much larger sample confirms that the primary and secondary spirals in S+S pairs follow a Holmberg effect correlation on sSFR

    Advanced glycation end product cross-link breaker attenuates diabetes-induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling

    Get PDF
    Diabetic heart disease is a distinct clinical entity that can progress to heart failure and sudden death. However, the mechanisms responsible for the alterations in excitation-contraction coupling leading to cardiac dysfunction during diabetes are not well known. Hyperglycemia, the landmark of diabetes, leads to the formation of advanced glycation end products (AGEs) on long-lived proteins, including sarcoplasmic reticulum (SR) Ca2+ regulatory proteins. However, their pathogenic role on SR Ca2+ handling in cardiac myocytes is unknown. Therefore, we investigated whether an AGE cross-link breaker could prevent the alterations in SR Ca2+ cycling that lead to in vivo cardiac dysfunction during diabetes. Streptozotocin-induced diabetic rats were treated with alagebrium chloride (ALT-711) for 8 weeks and compared to age-matched placebo-treated diabetic rats and healthy rats. Cardiac function was assessed by echocardiographic examination. Ventricular myocytes were isolated to assess SR Ca2+ cycling by confocal imaging and quantitative Western blots. Diabetes resulted in in vivo cardiac dysfunction and ALT-711 therapy partially alleviated diastolic dysfunction by decreasing isovolumetric relaxation time and myocardial performance index (MPI) (by 27 and 41% vs. untreated diabetic rats, respectively, P < 0.05). In cardiac myocytes, diabetes-induced prolongation of cytosolic Ca2+ transient clearance by 43% and decreased SR Ca2+ load by 25% (P < 0.05); these parameters were partially improved after ALT-711 therapy. SERCA2a and RyR2 protein expression was significantly decreased in the myocardium of untreated diabetic rats (by 64 and 36% vs. controls, respectively, P < 0.05), but preserved in the treated diabetic group compared to controls. Collectively, our results suggest that, in a model of type 1 diabetes, AGE accumulation primarily impairs SR Ca2+ reuptake in cardiac myocytes and that long-term treatment with an AGE cross-link breaker partially normalized SR Ca2+ handling and improved diabetic cardiomyopathy.Peer reviewedPhysiological Science

    Saturn's atmospheric response to the large influx of ring material inferred from Cassini INMS measurements

    Full text link
    During the Grand Finale stage of the Cassini mission, organic-rich ring material was discovered to be flowing into Saturn's equatorial upper atmosphere at a surprisingly large rate. Through a series of photochemical models, we have examined the consequences of this ring material on the chemistry of Saturn's neutral and ionized atmosphere. We find that if a substantial fraction of this material enters the atmosphere as vapor or becomes vaporized as the solid ring particles ablate upon atmospheric entry, then the ring-derived vapor would strongly affect the composition of Saturn's ionosphere and neutral stratosphere. Our surveys of Cassini infrared and ultraviolet remote-sensing data from the final few years of the mission, however, reveal none of these predicted chemical consequences. We therefore conclude that either (1) the inferred ring influx represents an anomalous, transient situation that was triggered by some recent dynamical event in the ring system that occurred a few months to a few tens of years before the 2017 end of the Cassini mission, or (2) a large fraction of the incoming material must have been entering the atmosphere as small dust particles less than ~100 nm in radius, rather than as vapor or as large particles that are likely to ablate. Future observations or upper limits for stratospheric neutral species such as HC3_3N, HCN, and CO2_2 at infrared wavelengths could shed light on the origin, timing, magnitude, and nature of a possible vapor-rich ring-inflow event.Comment: accepted in Icaru
    corecore