28 research outputs found

    Interaction between IRF6 and TGFA Genes Contribute to the Risk of Nonsyndromic Cleft Lip/Palate

    Get PDF
    Previous evidence from tooth agenesis studies suggested IRF6 and TGFA interact. Since tooth agenesis is commonly found in individuals with cleft lip/palate (CL/P), we used four large cohorts to evaluate if IRF6 and TGFA interaction contributes to CL/P. Markers within and flanking IRF6 and TGFA genes were tested using Taqman or SYBR green chemistries for case-control analyses in 1,000 Brazilian individuals. We looked for evidence of gene-gene interaction between IRF6 and TGFA by testing if markers associated with CL/P were overtransmitted together in the case-control Brazilian dataset and in the additional family datasets. Genotypes for an additional 142 case-parent trios from South America drawn from the Latin American Collaborative Study of Congenital Malformations (ECLAMC), 154 cases from Latvia, and 8,717 individuals from several cohorts were available for replication of tests for interaction. Tgfa and Irf6 expression at critical stages during palatogenesis was analyzed in wild type and Irf6 knockout mice. Markers in and near IRF6 and TGFA were associated with CL/P in the Brazilian cohort (p<10-6). IRF6 was also associated with cleft palate (CP) with impaction of permanent teeth (p<10-6). Statistical evidence of interaction between IRF6 and TGFA was found in all data sets (p = 0.013 for Brazilians; p = 0.046 for ECLAMC; p = 10-6 for Latvians, and p = 0.003 for the 8,717 individuals). Tgfa was not expressed in the palatal tissues of Irf6 knockout mice. IRF6 and TGFA contribute to subsets of CL/P with specific dental anomalies. Moreover, this potential IRF6-TGFA interaction may account for as much as 1% to 10% of CL/P cases. The Irf6-knockout model further supports the evidence of IRF6-TGFA interaction found in humans. © 2012 Letra et al

    Genome wide association scan for chronic periodontitis implicates novel locus

    Get PDF
    Background: There is evidence for a genetic contribution to chronic periodontitis. In this study, we conducted a genome wide association study among 866 participants of the University of Pittsburgh Dental Registry and DNA Repository, whose periodontal diagnosis ranged from healthy (N = 767) to severe chronic periodontitis (N = 99).Methods: Genotypingi of over half-million single nucleotide polymorphisms was determined. Analyses were done twice, first in the complete dataset of all ethnicities, and second including only samples defined as self-reported Whites. From the top 100 results, twenty single nucleotide polymorphisms had consistent results in both analyses (borderline p-values ranging from 1E-05 to 1E-6) and were selected to be tested in two independent datasets derived from 1,460 individuals from Porto Alegre, and 359 from Rio de Janeiro, Brazil. Meta-analyses of the Single nucleotide polymorphisms showing a trend for association in the independent dataset were performed.Results: The rs1477403 marker located on 16q22.3 showed suggestive association in the discovery phase and in the Porto Alegre dataset (p = 0.05). The meta-analysis suggested the less common allele decreases the risk of chronic periodontitis.Conclusions: Our data offer a clear hypothesis to be independently tested regarding the contribution of the 16q22.3 locus to chronic periodontitis. © 2014 Feng et al.; licensee BioMed Central Ltd

    Buccal cells DNA extraction to obtain high quality human genomic DNA suitable for polymorphism genotyping by PCR-RFLP and Real-Time PCR

    Get PDF
    OBJECTIVE: The aim of this study was to evaluate, by PCR-RFLP and Real-time PCR, the yield and quality of genomic DNA collected from buccal cells by mouthwash after different storage times at room temperature. MATERIAL AND METHODS: A group of volunteers was recruited to collect buccal cells using a mouthwash solution. The collected solution was divided into 3 tubes, one tube were used for immediate extraction and the remaining received ethanol and were kept at room temperature for 4 and 8 days followed by DNA extraction. The concentration, purity and integrity of the DNA were determined using spectrophotometry and electrophoresis. DNA quality differences among the three incubation times were also evaluated for genotyping EGF +61 A/G (rs 4444903) polymorphism by PCR-RFLP and for IRF6 polymorphism (rs 17015215) using Real-Time PCR. RESULTS: There was no significant difference of DNA yield (p=0.75) and purity (p=0.86) among the three different incubation times. DNA obtained from different incubation times presented high-molecular weight. The PCR-RFLP and Real time PCR reactions were successfully performed for all DNA samples, even those extracted after 8 days of incubation. All samples genotyped by Real-Time PCR presented C allele for IRF6 gene polymorphism (homozygous: CC; heterozygous: CT) and the C allele was used as a reference for Ct values. The samples presented the same genotype for the different times in both techniques. CONCLUSION: We demonstrated that the method described herein is simple and low cost, and that DNA can be extracted and PCR amplified after storage in mouthwash solution at room temperature

    Unveiling novel genes upregulated by both rhBMP2 and rhBMP7 during early osteoblastic transdifferentiation of C2C12 cells

    Get PDF
    <p>Abstract</p> <p>Findings</p> <p>We set out to analyse the gene expression profile of pre-osteoblastic C2C12 cells during osteodifferentiation induced by both rhBMP2 and rhBMP7 using DNA microarrays. Induced and repressed genes were intercepted, resulting in 1,318 induced genes and 704 repressed genes by both rhBMP2 and rhBMP7. We selected and validated, by RT-qPCR, 24 genes which were upregulated by rhBMP2 and rhBMP7; of these, 13 are related to transcription (<it>Runx2, Dlx1, Dlx2, Dlx5, Id1, Id2, Id3, Fkhr1, Osx, Hoxc8, Glis1, Glis3 </it>and <it>Cfdp1</it>), four are associated with cell signalling pathways (<it>Lrp6, Dvl1, Ecsit </it>and <it>PKCδ</it>) and seven are associated with the extracellular matrix (<it>Ltbp2, Grn, Postn, Plod1, BMP1, Htra1 </it>and <it>IGFBP-rP10</it>). The novel identified genes include: <it>Hoxc8, Glis1, Glis3, Ecsit, PKCδ, LrP6, Dvl1, Grn, BMP1, Ltbp2, Plod1, Htra1 </it>and <it>IGFBP-rP10</it>.</p> <p>Background</p> <p>BMPs (bone morphogenetic proteins) are members of the TGFβ (transforming growth factor-β) super-family of proteins, which regulate growth and differentiation of different cell types in various tissues, and play a critical role in the differentiation of mesenchymal cells into osteoblasts. In particular, rhBMP2 and rhBMP7 promote osteoinduction <it>in vitro </it>and <it>in vivo</it>, and both proteins are therapeutically applied in orthopaedics and dentistry.</p> <p>Conclusion</p> <p>Using DNA microarrays and RT-qPCR, we identified both previously known and novel genes which are upregulated by rhBMP2 and rhBMP7 during the onset of osteoblastic transdifferentiation of pre-myoblastic C2C12 cells. Subsequent studies of these genes in C2C12 and mesenchymal or pre-osteoblastic cells should reveal more details about their role during this type of cellular differentiation induced by BMP2 or BMP7. These studies are relevant to better understanding the molecular mechanisms underlying osteoblastic differentiation and bone repair.</p

    Modulation of Src Activity by Low Molecular Weight Protein Tyrosine Phosphatase During Osteoblast Differentiation

    Get PDF
    Background: Src kinase plays a critical role in bone metabolism, particularly in osteoclasts. However, the ability of Src kinase to modulate the activity of other bone cells is less well understood. In this work, we examined the expression and activity of Src and low molecular weight protein tyrosine phosphatase (LMWPTP) during osteoblast differentiation and assessed the modulation of Src kinase by LMWPTP. Methods: Differentiation of MC3T3-E1 pre-osteoblasts was induced by incubation with ascorbic acid and beta-glycerophosphate for up to 28 days. Src phosphorylation and LMWPTP expression were analyzed by immunoblotting. Src dephosphorylation in vitro was assessed by incubating immunoprecipitated Src with LMWPTP followed by assay of the residual Src activity using Sam68 as substrate. The importance of LMWPTP in Src dephosphorylation was confirmed by silencing pre-osteoblasts with siRNA-LMWPTP and then assessing Src phosphorylation. Results: Pre-osteoblast differentiation was accompanied by a decrease in phosphorylation of the activator site of Src and an increase in phosphorylation of the inhibitory site. The expression of total Src was unaltered, indicating that post-translational modifications play a pivotal role in Src function. LMWPTP expression was higher in periods when the activator site of Src was dephosphorylated. LMWPTP dephosphorylated pY(527)-Src and pY(416)-Src in vitro, with greater specificity for pY(527) Src. Activation of LMWPTP produced strong activation of Src mediated by fast dephosphorylation of pY(527)-Src, followed by slower deactivation of this kinase via dephosphorylation of pY(416) Src. Conclusion: These results provide new insight into the mechanisms governing the dynamics of Src activity during osteoblast differentiation. A fuller understanding of these mechanisms will improve our knowledge of bone metabolism and of the regulation of Src in other types of cells. Copyright (c) 2008 S. Karger AG, Base

    MMP-9 and CD68(+) cells are required for tissue remodeling in response to natural hydroxyapatite

    No full text
    Large bone defects represent major clinical problems in the practice of reconstructive orthopedic and craniofacial surgery. The aim of this study was to examine, through immunohistochemistry approach, the involvement of MMP-9 and CD68(+) cells during tissue remodeling in response to natural hydroxyapatite (HA) implanted in rat subcutaneous tissue. Before experimentation, forty animals were randomly distributed into two experimental groups: Group-I (Gen-Ox (TM) micro-granules) and Group-II (Gen-Ox (TM) macro-granules). Afterwards, the biopsies were collected after 10, 20, 30, and 60 days post-implantation. Our results showed that at 10 days, a low-renewal foreign body type granuloma formation was observed in most of the cases. Macrophage- and fibroblast-like cells were the predominant type of cells positively stained for MMP-9 in both groups. Once macrophage-like cells seemed to be the major source of MMP9, antibody against pan-CD68 epitope was used to correlate these findings. In agreement, MMP-9 and CD68(+) cells were distributed at the periphery and the central region of the granuloma in all experimental periods, however no staining was observed in cell contacting to material. Besides macrophages, the lysosomal glycoprotein epitope recognized by CD68 antibodies can be expressed by mast cell granules and sometimes by fibroblasts. Taken together, our results suggest that xenogenic HA promotes extracellular matrix remodeling through induction of MMP-9 activity and presence of CD68(+) cells.FAPESP Fundacao de Amparo a Pesquisa do Estado de Sao Paulo[08/53003-9

    Cytocompatibility of chitosan and collagen-chitosan scaffolds for tissue engineering

    No full text
    In this work, chitosan and collagen-chitosan porous scaffolds were produced by the freeze drying method and characterized as potential skin substitutes. Their beneficial effects on soft tissues justify the choice of both collagen and chitosan. Samples were characterized using scanning electron microscope, Fourier Transform InfraRed Spectroscopy (FTIR) and thermogravimetry (TG). The in vitro cytocompatibility of chitosan and collagen-chitosan scaffolds was evaluated with three different assays. Phenol and titanium powder were used as positive and negative controls, respectively. Scanning electron microscopy revealed the highly interconnected porous structure of the scaffolds. The addition of collagen to chitosan increased both pore diameter and porosity of the scaffolds. Results of FTIR and TG analysis indicate that the two polymers interact yielding a miscible blend with intermediate thermal degradation properties. The reduction of XTT ((2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) and the uptake of Neutral Red (NR) were not affected by the blend or by the chitosan scaffold extracts, but the blend and the titanium powder presented greater incorporation of Crystal Violet (CV) than phenol and chitosan alone. In conclusion, collagen-chitosan scaffolds produced by freeze-drying methods were cytocompatible and presented mixed properties of each component with intermediate thermal degradation properties

    Ascorbate-induced osteoblast differentiation recruits distinct MMP-inhibitors: RECK and TIMP-2

    No full text
    The bone formation executed by osteoblasts represents an interesting research field both for basic and applied investigations. The goal of this work was to evaluate the molecular mechanisms involved during osteoblast differentiation in vitro. Accordingly, we demonstrated that, during the osteoblastic differentiation, TIMP-2 and RECK presented differential expressions, where RECK expression was downregulated from the 14th day in contrast with an increase in TIMP-2. Concomitantly, our results showed a temporal regulation of two major signaling cascades during osteoblast differentiation: proliferation cascades in which RECK, PI3 K, and GSK-3 beta play a pivotal role and latter, differentiation cascades with participation of Ras, Rho, Rac-1, PKC alpha/beta, and TIMP-2. Furthermore, we observed that phosphorylation level of paxillin was downregulated while FAK(125) remained unchangeable, but active during extracellular matrix (ECM) remodeling. Concluding, our results provide evidences that RECK and TIMP-2 are involved in the control of ECM remodeling in distinct phases of osteoblast differentiation by modulating MMP activities and a multitude of signaling proteins governs these events

    Ascorbate-induced osteoblast differentiation recruits distinct MMP-inhibitors:RECK and TIMP-2

    No full text
    The bone formation executed by osteoblasts represents an interesting research field both for basic and applied investigations. The goal of this work was to evaluate the molecular mechanisms involved during osteoblast differentiation in vitro. Accordingly, we demonstrated that, during the osteoblastic differentiation, TIMP-2 and RECK presented differential expressions, where RECK expression was downregulated from the 14th day in contrast with an increase in TIMP-2. Concomitantly, our results showed a temporal regulation of two major signaling cascades during osteoblast differentiation: proliferation cascades in which RECK, PI3 K, and GSK-3 beta play a pivotal role and latter, differentiation cascades with participation of Ras, Rho, Rac-1, PKC alpha/beta, and TIMP-2. Furthermore, we observed that phosphorylation level of paxillin was downregulated while FAK(125) remained unchangeable, but active during extracellular matrix (ECM) remodeling. Concluding, our results provide evidences that RECK and TIMP-2 are involved in the control of ECM remodeling in distinct phases of osteoblast differentiation by modulating MMP activities and a multitude of signaling proteins governs these events

    Immunolocalization of matrix metalloproteinases-2 and-9 during apical periodontitis development

    No full text
    The objective of this study was to determine the expression of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) during apical periodontitis development. Using an experimental design of induced periapical lesions in rats and immunohistochemistry assay as investigative tool, the MMP-2 and MMP-9 expression and distribution were evaluated at 3, 7,14, 21, 30,60 and 90 days after coronary access and pulp exposure of the first left mandibular molar to the oral environment. Two blind observers scored the immunoreactivity. A semi-quantitative analysis was performed. Except at day 3, MMP-2 and MMP-9 immunostaining was observed in all experimental periods. The MMP-2 (p = 0.004) and MMP-9 (p = 0.005) immunostaining was higher in the period between 7 and 21 days. They were mainly observed in cells surrounding the apical foramen and adjacent periapical areas. Cells into the hypercementosis areas were strongly stained while both osteoblasts and osteoclasts; presented discrete staining along of this study. No staining was observed on epithelial walls. At 30, 60 and 90 days, the subjacent connective tissue presented intense MMP-2 and MMP-9 immunostaining in mononuclear cells (suggestive of fibroblasts, macrophages, infiltrating neutrophils and lymphocytes). The results observed in this study suggest that MMP-2 and MMP-9 play a critical role in the development of inflammatory periapical lesions, probably involved in the extracellular matrix (ECM) degradation during the initial phase of the lesion development548764771CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP475721/2003-908/53003-9; 01/1070
    corecore