7 research outputs found

    P73 plays a role in erythroid differentiaion through GATA1 induction

    Get PDF
    The TP73 gene gives rise to transactivation domain-p73 isoforms (TAp73) as well as ΔNp73 variants with a truncated N terminus. Although TAp73α and -Β proteins are capable of inducing cell cycle arrest, apoptosis, and differentiation, ΔNp73 acts in many cell types as a dominant-negative repressor of p53 and TAp73. It has been proposed that p73 is involved in myeloid differentiation, and its altered expression is involved in leukemic degeneration. However, there is little evidence as to which p73 variants (TA or ΔN) are expressed during differentiation and whether specific p73 isoforms have the capacity to induce, or hinder, this differentiation in leukemia cells. In this study we identify GATA1 as a direct transcriptional target of TAp73α. Furthermore, TAp73α induces GATA1 activity, and it is required for erythroid differentiation. Additionally, we describe a functional cooperation between TAp73 and ΔNp73 in the context of erythroid differentiation in human myeloid cells, K562 and UT-7. Moreover, the impaired expression of GATA1 and other erythroid genes in the liver of p73KO embryos, together with the moderated anemia observed in p73KO young mice, suggests a physiological role for TP73 in erythropoiesis.Peer reviewe

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Interaction between FGFR-2, STAT5, and progesterone receptors in breast cancer

    Get PDF
    Fibroblast growth factor (FGF) receptor 2 (FGFR-2) polymorphisms have been associated with an increase in estrogen receptor and progesterone receptor (PR)-positive breast cancer risk; however, a clear mechanistic association between FGFR-2 and steroid hormone receptors remains elusive. In previous works, we have shown a cross talk between FGF2 and progestins in mouse mammary carcinomas. To investigate the mechanisms underlying these interactions and to validate our findings in a human setting, we have used T47D human breast cancer cells and human cancer tissue samples. We showed that medroxyprogesterone acetate (MPA) and FGF2 induced cell proliferation and activation of ERK, AKT, and STAT5 in T47D and in murine C4-HI cells. Nuclear interaction between PR, FGFR-2, and STAT5 after MPA and FGF2 treatment was also showed by confocal microscopy and immunoprecipitation. This effect was associated with increased transcription of PRE and/or GAS reporter genes, and of PR/STAT5-regulated genes and proteins. Two antiprogestins and the FGFR inhibitor PD173074, specifically blocked the effects induced by FGF2 or MPA respectively. The presence of PR/FGFR-2/ STAT5 complexes bound to the PRE probe was corroborated by using NoShift transcription and chromatin immunoprecipitation of the MYC promoter. Additionally, we showed that T47D cells stably transfected with constitutively active FGFR-2 gave rise to invasive carcinomas when transplanted into NOD/SCID mice. Nuclear colocalization between PR and FGFR-2/STAT5 was also observed in human breast cancer tissues. This study represents the first demonstration of a nuclear interaction between FGFR-2 and STAT5, as PR coactivators at the DNA progesterone responsive elements, suggesting that FGFRs are valid therapeutic targets for human breast cancer treatment. ©2011 AACR.Fil: Cerliani, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Guillardoy, Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Giulianelli, Sebastian Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Vaque, José P.. National Institutes of Health; Estados UnidosFil: Gutkind JS. National Institutes of Health; Estados UnidosFil: Vanzulli, Silvia. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Martins, Rubén. Clínica Bancaria; ArgentinaFil: Zeitlin, Eduardo. Clínica Bancaria; ArgentinaFil: Lamb, Caroline Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Lanari, Claudia Lee Malvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    p73 Plays a Role in Erythroid Differentiation through GATA1 Induction*

    No full text
    The TP73 gene gives rise to transactivation domain-p73 isoforms (TAp73) as well as ΔNp73 variants with a truncated N terminus. Although TAp73α and -β proteins are capable of inducing cell cycle arrest, apoptosis, and differentiation, ΔNp73 acts in many cell types as a dominant-negative repressor of p53 and TAp73. It has been proposed that p73 is involved in myeloid differentiation, and its altered expression is involved in leukemic degeneration. However, there is little evidence as to which p73 variants (TA or ΔN) are expressed during differentiation and whether specific p73 isoforms have the capacity to induce, or hinder, this differentiation in leukemia cells. In this study we identify GATA1 as a direct transcriptional target of TAp73α. Furthermore, TAp73α induces GATA1 activity, and it is required for erythroid differentiation. Additionally, we describe a functional cooperation between TAp73 and ΔNp73 in the context of erythroid differentiation in human myeloid cells, K562 and UT-7. Moreover, the impaired expression of GATA1 and other erythroid genes in the liver of p73KO embryos, together with the moderated anemia observed in p73KO young mice, suggests a physiological role for TP73 in erythropoiesis
    corecore