10 research outputs found

    Unstable state decay in non-Markovian heat baths and weak signals detection

    Get PDF
    The statistics of the first passage and nonlinear relaxation times are used to characterize the decay process of an unstable state for an electrically charged Brownian particle embedded in non-Markovian heat baths under the action of an external electric field. The relaxation process is described, in the overdamped regime, by a Generalized Langevin Equation (GLE) characterized by an arbitrary friction memory kernel, and a bistable potential profile. By applying the quasideterministic approach, the statistics of the mean first passage time is calculated through the exact analytical solution of the GLE with arbitrary memory kernel in the linear regime of the bistable potential. To characterize the relaxation process including the nonlinear contributions of the bistable potential, we use the specific Ornstein–Uhlenbeck friction memory kernel to exactly calculate the nonlinear statistics of the mean first passage time as well as the nonlinear relaxation time. Both characteristic times are applied for possible detection of weak signals in the unstable state decay process.Peer ReviewedPreprin

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    The nonlinear relaxation time and quasideterministic-theory approaches to characterize the decay of unestable states

    No full text
    We present the relationship between nonlinear-relaxation-time (NLRT) and quasideterministic approaches to characterize the decay of an unstable state. The universal character of the NLRT is established. The theoretical results are applied to study the dynamical relaxation of the Landau model in one and n variables and also a laser model

    Nonlinear relaxation time and the detection of weak signals

    No full text
    Laser systems can be used to detect very weak optical signals. The physical mechanism is the dynamical process of the relaxation of a laser from an unstable state to a steady stable state. We present an analysis of this process based on the study of the nonlinear relaxation time. Our analytical results are compared with numerical integration of the stochastic differential equations that model this process

    The Entropy Production Distribution in Non-Markovian Thermal Baths

    No full text
    In this work we study the distribution function for the total entropy production of a Brownian particle embedded in a non-Markovian thermal bath. The problem is studied in the overdamped approximation of the generalized Langevin equation, which accounts for a friction memory kernel characteristic of a Gaussian colored noise. The problem is studied in two physical situations: (i) when the particle in the harmonic trap is subjected to an arbitrary time-dependent driving force; and (ii) when the minimum of the harmonic trap is arbitrarily dragged out of equilibrium by an external force. By assuming a natural non Markovian canonical distribution for the initial conditions, the distribution function for the total entropy production becomes a non Gaussian one. Its characterization is then given through the first three cumulants

    Decay of unstable states in the presence of colored noise and random initial conditions. I. Theory of nonlinear relaxation times

    No full text
    The general theory of nonlinear relaxation times is developed for the case of Gaussian colored noise. General expressions are obtained and applied to the study of the characteristic decay time of unstable states in different situations, including white and colored noise, with emphasis on the distributed initial conditions. Universal effects of the coupling between colored noise and random initial conditions are predicted

    Unstable state decay in non-Markovian heat baths and weak signals detection

    No full text
    The statistics of the first passage and nonlinear relaxation times are used to characterize the decay process of an unstable state for an electrically charged Brownian particle embedded in non-Markovian heat baths under the action of an external electric field. The relaxation process is described, in the overdamped regime, by a Generalized Langevin Equation (GLE) characterized by an arbitrary friction memory kernel, and a bistable potential profile. By applying the quasideterministic approach, the statistics of the mean first passage time is calculated through the exact analytical solution of the GLE with arbitrary memory kernel in the linear regime of the bistable potential. To characterize the relaxation process including the nonlinear contributions of the bistable potential, we use the specific Ornstein–Uhlenbeck friction memory kernel to exactly calculate the nonlinear statistics of the mean first passage time as well as the nonlinear relaxation time. Both characteristic times are applied for possible detection of weak signals in the unstable state decay process.Peer Reviewe

    The nonlinear relaxation time and quasideterministic-theory approaches to characterize the decay of unestable states

    No full text
    We present the relationship between nonlinear-relaxation-time (NLRT) and quasideterministic approaches to characterize the decay of an unstable state. The universal character of the NLRT is established. The theoretical results are applied to study the dynamical relaxation of the Landau model in one and n variables and also a laser model

    Decay of unstable states in the presence of colored noise and random initial conditions. II. Analog experiments and digital simulations

    No full text
    The decay of an unstable state under the influence of external colored noise has been studied by means of analog experiments and digital simulations. For both fixed and random initial conditions, the time evolution of the second moment ¿x2(t)¿ of the system variable was determined and then used to evaluate the nonlinear relaxation time. The results obtained are found to be in excellent agreement with the theoretical predictions of the immediately preceding paper [Casademunt, Jiménez-Aquino, and Sancho, Phys. Rev. A 40, 5905 (1989)]

    NEOTROPICAL ALIEN MAMMALS: a data set of occurrence and abundance of alien mammals in the Neotropics

    No full text
    Biological invasion is one of the main threats to native biodiversity. For a species to become invasive, it must be voluntarily or involuntarily introduced by humans into a nonnative habitat. Mammals were among first taxa to be introduced worldwide for game, meat, and labor, yet the number of species introduced in the Neotropics remains unknown. In this data set, we make available occurrence and abundance data on mammal species that (1) transposed a geographical barrier and (2) were voluntarily or involuntarily introduced by humans into the Neotropics. Our data set is composed of 73,738 historical and current georeferenced records on alien mammal species of which around 96% correspond to occurrence data on 77 species belonging to eight orders and 26 families. Data cover 26 continental countries in the Neotropics, ranging from Mexico and its frontier regions (southern Florida and coastal-central Florida in the southeast United States) to Argentina, Paraguay, Chile, and Uruguay, and the 13 countries of Caribbean islands. Our data set also includes neotropical species (e.g., Callithrix sp., Myocastor coypus, Nasua nasua) considered alien in particular areas of Neotropics. The most numerous species in terms of records are from Bos sp. (n = 37,782), Sus scrofa (n = 6,730), and Canis familiaris (n = 10,084); 17 species were represented by only one record (e.g., Syncerus caffer, Cervus timorensis, Cervus unicolor, Canis latrans). Primates have the highest number of species in the data set (n = 20 species), partly because of uncertainties regarding taxonomic identification of the genera Callithrix, which includes the species Callithrix aurita, Callithrix flaviceps, Callithrix geoffroyi, Callithrix jacchus, Callithrix kuhlii, Callithrix penicillata, and their hybrids. This unique data set will be a valuable source of information on invasion risk assessments, biodiversity redistribution and conservation-related research. There are no copyright restrictions. Please cite this data paper when using the data in publications. We also request that researchers and teachers inform us on how they are using the data
    corecore