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Abstract

The statistics of the first passage time and nonlinear relaxation time are
used to characterize the decay process of an unstable state for an electrically
charged Brownian particle embedded in non-Markovian heat baths under the
action of an external electric field. The relaxation process is described, in
the overdamped regime, by a Generalized Langevin Equation (GLE) char-
acterized by an arbitrary friction memory kernel and a bistable potential
profile. By applying the quasideterministic approach, the statistics of the
mean first passage time is calculated through the exact analytical solution of
the GLE with arbitrary memory kernel in the linear regime of the bistable
potential. To characterize the relaxation process including the nonlinear con-
tributions of the bistable potential, we use the specific Ornstein-Uhlenbeck
friction memory kernel to exactly calculate the nonlinear statistics of the
mean first passage time as well as the nonlinear relaxation time. Both char-
acteristic times are applied for possible detection of weak signals in the decay
process of the unstable state.
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1. Introduction

The First Passage Time (FPT) is a paradigmatic topic of great interest
in science which continues to be applied in a variety of systems as diverse as
physics, chemistry, biology, finance, etc. [1, 2, 3]. For instance, it has recently
been studied in viscoelastic fluids [4], diffusive processes —ranging from ordi-
nary diffusion (Brownian motion) to continuous-time random walks [5, 6]—,
fractional Brownian motion [7, 8], Lévy flights [9, 10], trapped diffusion [11],
geometric confinement [3, 12], Ornstein-Uhlenbeck process [13, 14], etc. The
FPT has also been explored in non-Markovian situations including biological
systems [15, 16], random walks in confined media [17, 18], detection of weak
signals [19], among others [20, 21, 22, 23, 24, 25, 26, 27, 28, 29].

In the study of Brownian motion, it is well known that the hypothesis
of white noise for the noise correlation function (delta correlation function)
is assumed to be valid when both mass and size of the Brownian particle
are much larger than the surrounding molecules, and therefore the stochastic
process is called Markovian. When the mass and size of the Brownian particle
are not larger but roughly the same as the surroundings, the assumption of
a delta correlation function for the noise is no longer valid. This means that
any physical interaction between the Brownian particle with its surround-
ing actually takes place within a finite correlation time. In this case, the
stochastic process is non-Markovian. To describe the dynamics of a Brown-
ian particle in a more realistic situation Kubo [30], proposed a generalization
to the ordinary Langevin equation which is named as Generalized Langevin
Equation (GLE).

In 1989 Vemuri and Roy [31] prosed for first time that weak optical signals
can be detected via the transient dynamic of a laser system (also known as
switch-on process) much in the same way as the superregenerative detection
in radar receivers. By transient dynamics, we mean that the laser intensity
experiences by spontaneous emission, the decay process from an initial un-
stable state to its corresponding steady-sate value. The physical idea behind
the detection process is that weak signals are greatly amplified when used to
trigger the decay process. The criteria proposed in [31] was given in terms
of a quantity named as Received-Output (RO) and it could be connected
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with the Nonlinear Relaxation Time (NLRT) in [32]. Beside, another alter-
native criteria to detect weak optical signals related to the Statistics of the
First Passage Time (SFPT) was given in [33]. The experimental execution
by measurements the statistics of the initiation time of an argon laser under
the influence of an attenuated He-Ne laser was reported in [34].

Over twenty years later, another physical mechanism to detect weak signals
was proposed in [35]. It is related to the decay process of an unstable state
of a charged Brownian particle under the action of constant crossed electric
and magnetic fields.

The mechanism for the detection process in this case is as follows: At ini-
tial time ¢ = 0, the particle is located on the unstable state of the potential
profile. Once the decay process is initiated due to the internal fluctuations,
a weak external signal is then injected accelerating the decay process. The
process also suggests the possible amplification of the weak signal in order
to be detected.

The study of relaxation processes of nonequilibrium phenomena through
the Mean First Passage Time (MFPT) has been formulated in the context of
Langevin, Fokker-Planck, or master equations to Markovian as well as non-
Markovian processes. In particular, the study of the decay process of the un-
stable states have been focused on different descriptions namely, the evolution
of the statistical moments of the relevant variables in terms of Fokker-Planck
equations [36, 37, 38, 39|, the inverse probability current also in the context
of Fokker-Planck equation [40, 41], or the study of time evolution of averages
in dynamical systems [42, 43, 44]. The works in [40, 41, 42, 43, 44, 45] pro-
vide a good description in the study of such transient stochastic dynamics.
However, one of the most appropriate technique in the study of the detection
of weak signals in the decay of an unstable state is the so-called Quaside-
terministic (QD) approach initially proposed in [36, 46]. It has successfully
been connected with the MFPT and NLRT to characterize such a decay pro-
cess. The QD approach gives a precise physical picture of the mechanism
responsible for the decay of the unstable state. The physical mechanism is
twofold: Small fluctuations change the initial condition in the surrounding of
the unstable state, and afterwards the deterministic motion drives the sys-
tem out of this state [22, 32, 33, 35, 47]. Even more, this approach provides
a simple way to deal with arbitrary nonlinear unstable potentials without
using a Fokker-Planck formulation. On the other hand, practically all the
works related to the detection of weak signals in the switch-on process of a
laser system rely upon a Langevin-type equation for a complex electric field



with additive Gaussian white noise. Whereas in the case of a charged Brow-
nian particle in crossed electric and magnetic fields, the standard Langevin
equation with constant friction coefficient and additive Gaussian white noise
has been used.

In 2014, the problem of the detection of weak signals in the decay process

of an unstable state in an Ornstein-Uhlenbeck (OU) heat bath, was studied
in the context of a GLE [19]. Two usual theoretical criteria for the detection
process were analyzed. One is related to the SFPT and the other, in terms of
the RO. To solve the problem the overdamped GLE was significantly reduced
to an only one ordinary Langevin equation with Markovian dynamics, with ef-
fective parameters depending on a factor incorporating some non-Markovian
effects. Our purpose in this work is to study the relaxation process of the
decay of the unstable state of a charged Brownian particle embedded in non-
Markovian heat baths, under the action of a constant electric field. Here
we propose an alternative strategy allowing to solve the problem in an exact
way. In first place, we use the QD approach to calculate the SFPT to charac-
terize such a decay process through the explicit solution of the overdamped
GLE with arbitrary friction memory kernel, in the linear approximation of
the bistable potential profile. With this general solution we show that the
QD approach is an effective theoretical description, even when an arbitrary
memory kernel is considered. In this linear regime we obtain the SFPT for
a specific OU friction memory kernel.
To characterize the relaxation process of the unstable state taking into ac-
count the nonlinear contribution of the bistable potential, we also use the
OU memory kernel which allows to achieve our goal by transforming the
GLE into two coupled Langevin equations. Working on the nonlinear de-
terministic equation associated with these two Langevin equations, we are
able to characterize such a nonlinear decay process, by means of the nonlin-
ear SFPT and NLRT. As far as we know, the time characterization of the
non-Markovian dynamical relaxation of the decay of an unstable state, char-
acterized by a GLE with arbitrary friction memory kernel has not yet been
reported in literature.

We also use the two nonlinear time scales to study two theoretical cri-
teria for the detection process of weak signals. Our theoretical results are
corroborated by the numerical simulation and compared with the Markovian
case. Our work is structured in the following way: In section 2, we calcu-
late the linear SFPT through the explicit solution of the overdamped GLE
characterized by an arbitrary friction memory kernel. The consistence of our

4



analytical results are verified in the Markovian limit. Explicit results are
also obtained in the particular case of an OU memory kernel. Section 3, fo-
cuses on explicit and exact analytical calculations of the nonlinear SFPT and
NLRT for a specific OU friction memory kernel. These two nonlinear time
scales are used in section 4 to study the detection process of weak electric
signals; herein all the theoretical results are compared with the numerical
simulation. Comments and conclusions are given in section V.

2. Linear SFPT for the decay of an unstable state in non-Markovian
heat baths.

We consider an electrically charged Brownian particle of mass m and
charge qp embedded in a thermal bath of temperature T, initially located, at
time ¢ = 0, in an unstable state of a bistable potential V(z) = —(ag/2)z* +
(bo/4)z*, being ag, by > 0, see Fig. 1. We are interested in the time charac-
terization of the decay process of such an unstable state for the Brownian
particle, taking into account that the physical interaction between the par-
ticle with its surroundings is taking place within a finite correlation time.
At initial time the relaxation process is triggered by the internal fluctuations
and immediately after (t > 0) of the decay process, an external electric field
is injected accelerating the relaxation process. Because its interaction with
its surroundings, the dynamical relaxation of the unstable state is described
by the GLE given by

t
mo = _/ Yt =) u(t) dt' + agz — box® + qoEo + f(1), (1)
0

where ~y(t) is the friction memory kernel which is considered as a symmetric
function. It is related to the internal noise f(t), which is assumed to be
Gaussian with zero mean value and a correlation function that satisfies the
fluctuation-dissipation relation of the second kind [30]

(f@OF(E)) = kTt = 1), (2)

being k, the Boltzmann constant. To characterize the decay process of the
unstable state taking into account an arbitrary friction memory kernel, we
just consider the linear approximation of the above nonlinear unstable poten-
tial. In this regime of approximation the QD approach provides the relevant
information of the mechanism responsible for the decay process. Further-
more, it is around the initial unstable state where the internal fluctuations
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Figure 1: Schematic representation of the decay of the unstable state for a Brownian
particle under the action of an external constant electric field.

play a role. Due to these facts, the particle is restricted to move in the inter-
val —R < x < R, where R is the absorbing barrier. In this case, the above
GLE must be considered in the overdamped regime such that

AE@—&iWMﬂ=%x+%+f@, 3)

being Fy = qoFEy. The solution of this equation by assuming zero initial
condition x(0) = 0, can be obtained using the Laplace transform technique,
given as a result

w@zAHm—ﬂ%+ﬂMM, (4)

where Hy(t) the Laplace inverse transform of Hy(s) and

- 1

Ho(s) = peTr (5)

Also 4(s) is the Laplace transform of (¢). To apply the QD approach we
write the solution (4) in an appropriate form given by

x(t) = h(t) e, (6)

where A must be a positive constant which will depend on the type of model,
and thus

h(t) = /Ot e~ Hy(t —t)[Fy + f(¢))dt'. (7)
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According to the QD approach, the stochastic process h(t) must be a Gaus-
sian random variable in the large-time limit. This is indeed the case if, in
this limiting case, the arbitrary function e™*Hy(t — ¢') is convergent and
dominates over both the small amplitudes of the external force and small
noise intensity. In this case, we expect that h(co) = h = cst, is a constant,

such that .

h=1lim [ e MHy(t—t)[Fy+ f(t)]dt. (8)

t—o00 0

The variance of h is obtained from 02 = lim;_,, 0(t), where o%(t) = (h*(t)) —
(h(t))?, and thus

o2 — lim /0 t /0 LA 1 OV H(t— ) S dedE. (9)

t—o0

Using Egs. (2) and (5), it can be shown that

t t 2
0% = k,T lim e~ A [2 / Hy(t'dt' + aqg ( / eAtHO(t’)dt’> } (10)
0 0

t—o00

Therefore, in the large-time limit the process x(t) becomes quasi-deterministic
such that

22 (t) = h2e*A. (11)
The random passage time required for the charged particle to reach the po-
tential barrier R? becomes
1 R?
t=—1In|—]). 12
24 " (h?) (12)

The statistics of this passage time distribution can be calculated from both
the Gaussian probability density (GPD) P(h) and Moment Generating Func-
tion (MGF) defined by G(2av) = (e=24*) = ((R?/h*)7"). The GPD reads
as

1 2 2
P(h) = (h—(h))*/20 1
(h) = g ctia (13

where 02 is the same as Eq. (10) and the average (h) is given by

t

(h) = Fy lim [ e Hy(t —t)dt'. (14)

t—o00 0



Using Eq. (13), it is possible to show that the MGF reads
G(2Av) = Go(2Av)e™ M (v +1/2,1/2; 8, (15)

with Go(2A4v) = (R?/20?%)7*T'(v+1/2)/+/7 being the MGF in the absence of
the external electric force, M (a,b;z) the Kummer confluent hypergeometric
function [55], and 3% = (h)?/202. Given the MGF, the statistics of the
passage time is now easy to obtain. In this case, (2At) = —dG(2Av)/dv|,—o
and ((2A1)?) = *G(2Av)/dv?|,—o. After some algebra we can show that
the MFPT for arbitrary friction memory kernel, becomes
B 1 g > (52)n
{the = (Do — 5 16 > W(n+1/2) = 9(1/2)1 -, (16)

n=1

where
(0 =350 (38) — 701/2) 7

is the MFPT in the absence of the external force. Besides, the function ¢ (x)
also satisfies the identity ¢(n + 1/2) = (1/2) +2> ;_,1/(2k — 1), being
¥(1/2) = —1.96351. The variance defined by ((2AAt)?) = ((2At)%) — (2At)?
is shown to be

(AAD?) = ¢/ (1/2) + 7 Z{ (n+1/2) —(1/2))*+

e 12—l e w1 v L

n=1

(18)

where also ¢/ (n+1/2) = ¢'(1/2)—4>",_, 1/(2k — 1)?, with ¢'(1/2) = 7?/2 =
4.934 [55].

2.1. Markovian case

Let us now show that the above non-Markovian theoretical description is
consistent with the Markovian case, for which the time-dependent friction is
memoryless and given by 7(t) = 700(t), being v the friction coefficient. It is
easy to show that the Laplace inverse function Hy(t) = (1/70)e™ where a =
ao/Yo and thus e A Hy(t —t') = (1/~o)el® A= To ensure the convergence
of the function e **Hy(t — t'), it must be required that A = a and thus
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e M Hy(t —t') = (1/99)e®". So that, Egs. (10) and (14) in this Markovian
case become respectively 02 = D/a and (h),, = Fy/ag, with D = k, T/~
the Einstein diffusion coefficient. The external parameter becomes B; =
(h)?/20? = F?/2a D, with F = Fy/v,. Hence in the Markovian limit and
according to Eq. (16), the MFPT reads

o = 03 = 5o Dot 172 - w2
with . = )
00 = 5ot (55 ) = 50001/ (20)

The variance is the same as Eq. (18), except that the parameters A and ?
must be replaced by a and ﬁfp respectively.

2.2. Ornstein-Uhlenbeck friction memory kernel

In this section, we apply the above theoretical results to the case of an
OU friction memory kernel defined by v(t — ') = (vo/7)e”*"¥1/7, where 7o
is the friction coefficient and 7 the noise correlation time. In this case it is
easy to show that the Laplace inverse transform of H()(S) given by Eq. (5)

becomes
T 1 Bt

Hy(t) = ——0(t _ 21
0() 70(1_017_) ()+70(1—a7')2e ) ( )
where B = a/(1 — ar), which is positive if 1 — a7 > 0 and also a = ag/7. In
this case the solution given by Eq. (6) now reads z(t) = h(t)eP!, where h(t)

becomes

hoy(t) = m[Fo+f(t)]€_Bt

t
—Bt’ / /
—_— E ] dt'. 22
+ s [ R ) (22)
Evidently in the large-time limit and also for small values of both the noise
intensity and amplitude of the external force, we can see that h,,(c0) = h,,,
becomes a Gaussian random variable such that

_ 1 Ooe—Bt



Its average value reads

F F,
h = —=— 24
Row = 7=y = = (24)
where F, = F//(1 — ar). The variance can be calculated from Eq. (10), or
from Eqgs. (23) and (24). In any case it can be shown that

D D
2 o _ e
Tou = a(l—ar)?  a’ (25)
where D, = D/(1 —at)? is an effective Einstein diffusion coefficient. The (32
parameter in this case reads

2 <h>iU F2
Bou 202 2aD’ (26)

which is exactly the same as obtained in the Markovian case, that is, BgU =
ﬁij. This means that, for the OU process the external parameter Bfm does
not depend on the heat bath memory effects. The MFPT then reads

1 - (B2

(1" = {05y — gge D [Wn+1/2) =1/, (27)
where . e .
2 =551 (55 ) - 350072 (28)

The variance is also the same as Eq. (18), but the parameter A must be
replaced by the parameter B. It should be noticed that the dimensionless
time scale (2B£)0V is the same as the Markovian dimensionless time scale
(2at)¥ given by Eq. (19), if the Einstein diffusion coefficient D in Eq. (20),
is replaced by D..

3. Nonlinear time scales for the decay of an unstable state in
Ornstein-Uhlenbeck heat baths.

For the OU model it is possible to use the QD approach to characterize
the decay process of the unstable state taking into account the nonlinear
contribution of the bistable potential profile. In this section we will obtain
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the SFPT and the NLRT for the specific OU friction memory kernel. To
achieve the goal we introduce the definition of the deterministic dynamic
associated with the GLE given by (1). For such a purpose, we define the
change of variables defined by

o)== [T el 1o, (29

and
f(t) = _\:-X/ ef(t_;t/) f(t/) dt/, (30)
0

which allows writing the GLE (1) into the following two coupled quasi-
Markovian Langevin equations

mi = apx — bor® + Fy +n(t), (31)
. 1 VA
no= —mn— Lo Yo, (32)
T T T

being A = vk, T and £(t) a Gaussian white noise with zero mean value and
correlation function (£(¢)§(t')) = 2(t — t'). In the overdamped regime and
in the absence of the external force Fy, the deterministic dynamic associated
with Egs. (31) and (32) for the variable v = 22, can be written as

dv t(ty — )
hah QS S LR 33
dt — Co+ (3/2)T¢ (33)
where Cy = vy /2B, and vty = 12, = ag/bo.

3.1. Nonlinear statistics of the first passage time

The definition of this time scale, according to the QD approach, is given
by [19]

o = ([ i) = s (o (32)) s (=)
+ 2m (ﬁ) (34)

where h plays the role of an effective initial condition, R is the potential
barrier and M? = R?/z?%, such that 0 < M? < 1. This time scale now
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becomes

<t>gg:<t>ggL——e-%Z m+172 - v/l )

(Hov = %m (2(1_“—%) 213 (1/2) + 37111 <1 _1M2) (36)

is the nonlinear passage time in the absence of the external electric field. The
variance is again the same as Eq. (18).

Although mathematically the form of Eqgs. (35) and (36) are very similar
to those obtained in [19] [see Eqs. (37) and (38)], the differences between
them are basically the new contribution given by the third term of Eq. (36),
the effective Einstein diffusion coefficient D,., and the external parameter
(32. For instance, this third term is strictly non-Markovian and comes from
the nonlinear effects of the particle dynamic, contrary to what happens in
Eq. (38) of Ref. [19], in which such a nonlinear contribution is equal to
zero. In the present work the Einstein diffusion coefficient is rescaled by the
factor 1/(1 — a7)?, whereas in [19], such a factor is 1/(1 — a7). In this paper
the external parameter 32 = (h)?/20?, when applied to OU memory kernel,
curiously becomes the same as in the Markovian case, that is 82, = F*/2aD,
even when (h),, and o2  are heat bath dependent. However, in [19] such an
external parameter is given by 3% = ﬁfw(l — at), which means a rescaling of
the Markovian parameter by the factor (1 — at).

All of those differences arise because in our present work, the problem, when
applied to the OU friction memory kernel, the overdamped Langevin equation
is exactly solved.

It is also interesting to comment that, when the absorbing barrier is
removed, the point x can cross the point x = +R any number of times and in
any direction; in this case a study in terms of the inverse probability current
must be performed as done in [40], for Markovian processes. This study leads
to an unexpected effect called noise delayed decay (NDD), wherewith the
stochastic fluctuations can considerably increase the decay time of unstable
and metastable states. The method has been developed to calculate the
NLRT for any fluctuation intensity and arbitrary potential profile also in
the Markovian case. In the particular case of small fluctuations, the NLRT
coincides with the MFPT. Indeed, the NLRT defined in Ref. [40] has been
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calculated for the symmetric bistable potential and other potential profiles.
For symmetric bistable potential it has been shown that, for small noise
intensity such that ¢ < ®(z,,), the NLRT given by Eq. (15) of Ref. [40]
coincides with the MFPT calculated by Haake et al. [37] and given in Eq.
(16) of the same Ref. [40], as expected. The comparison is shown in Fig. 9
of Ref. [40]. In the Markovian case, our Eq. (36) is exactly the same as the
MFPT obtained in [37] if the noise parameter ¢ = k.7 and z,, = :l:\/a_/b,
with ®(x,,) = —a?/4b as the depth of the potential profile. In conclusion,
when the QD approach is used to characterize, by means of the MFPT,
the Markovian or non-Markovian decay process of an unstable state, this
relaxation process is bounded by fixed and absorbing barriers, so that the
inverse probability current becomes negligible.

3.2. Nonlinear relazation time

The other time scale used to characterize the dynamical relaxation of the
decay of an unstable state is named as, Non Linear Relaxation Time (NLRT)
[19]. In the case studied in this work it is associated with the dynamical
relaxation of the average (z*(t)), where x is the position of the Brownian
particle. The quantity (---) stands for the average taken on both, the noise
realizations and initial conditions. The quantity (z2(t)) = (t(t)) evolves
from an initial value (22(0)) = (¢(0)) to its corresponding steady-state value
(2?) s = (ty). The NLRT is defined as

po [y O Gy
o (22(0)) = (2*)st o (t(0)) = (V)a

The difference of this time scale with the one given by Eq. (34) is that
the NLRT can characterize the complete dynamical relaxation of the un-
stable state, taking into account the steady-state value z?% of the potential,
whereas in the MFPT Eq. (34) this steady-state value for the R? = M?2? is
prohibited, since 0 < M? < 1. In this case it must be clear that the nonlinear
MFPT must be lees that the NLRT.

The connection between the NLRT and the QD approach can be achieved by
assuming that t(0) = h? is a random variable, which plays the role of an effec-
tive initial condition responsible for the decay of the unstable state towards
its steady-state value ty. By assuming that (¢(0)) = 0 and substituting Eq.
(33) into (37), we get

- 1 Tst

13

T, (38)

DN o



where the additional factor 37/2 comes from the nonlinear character of the
bistable potential. Alternatively we can write

1 x2 h? 3
oUv _ _— st | _ o =
ToV = 5B {ln (202) <ln (202)>} + 27’ (39)

2

where the variance o° is the same as Eq. (25). For the second term of
the right hand side of Eq. (39) we define I = (In(h?/20?)), which can be
calculated with the help of the probability density P(h) given by Eq. (13),
yielding to

I = e Py(1/2)

6_52 [o¢]
NG > (n+1/2)T(n+1/2) (40)

being 32 the same external parameter defined before. Using the identity
['(n+1/2) = /m(2n — 1)11/2" it can also be shown that

W(1)2) + e Z n+1/2) — b(1/2)] (ﬁ;)n. (41)
Upon substitution into Eq. (39), we finally get the NLRT
Tov = Tov — —e*% Z n+1/2) —(1/2)] (65:')”, (42)
where ax? 1 3
ToU — %1 ( St) — 5pU(1/2)+ 57, (43)

is the NLRT in the absence of the external force. In a similar way as in the
MFPT, the time scales (42) and (43), are very similar to those obtained in
[19] [see Eqgs. (26) and (27) |, except for the third term given in Eq. (43)
coming from the nonlinear effects of the particle dynamic. In Eq. (27) of
Ref. [19], the nonlinear contribution is simply equal to zero.

4. Weak signals detection

We now use the two time scales obtained in the case of OU memory kernel
to study possible detection of weak signals. For weak signals we mean the
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case when the amplitude of the injected electric field is less or of the same
order than the noise intensity which in turn is also small. We first study the
criterion related to the SFPT and then the criterion related to the Received
Output (RO).

4.1. Criterion related to SFPT

This criterion allows determining a critical value of the g parameter for
which the statistics of the first passage time satisfies

[{)s. — (tha=o]” = ((At)*) 0. (44)

If we substitute Eqgs. (35) and (18) into this criterion we get

%e—@ > w(n+1/2) - w(1/2>](67”l—!>n
> [(1/2)]V4, )

This result determines a critical value 5. = 1.36543 at which the weak sig-
nal can be detected. Below this critical value there is no detection and
above this value the detection process must be efficient. Notice however that
B2 =32 = F?/2aD, and therefore the critical value is heat bath memory
independent and leads to the same result as in the Markovian case, contrary
to the prediction from Ref. [19]. It must be noticed also that the same result
(45) is obtained if we use the linear time scale (27) and the variance (18).

4.2. Criterion related to RO

The other criterion used to detect weak signals is the RO which is defined
as the ratio R = A. /Ay, where, A, is the area under the curve (z%(¢)), when
the particle dynamic is under the action of an external electric field, and Ay
the corresponding area in the absence of the electric field. Accordingly, the
RO can be expressed in terms of the time scales given by Eqs. (42) and (43).
This can be achieved if the NLRT (37) is approximated by

) — @ [ () — (e
A e e S e o ST CD

where T, is a quench time which guarantees that the system has reached its

steady-state value. It can take the value T, = 1.5T2V , with 79U the same
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as Eq. (43). If we take (x?(0)) = 0, it can be shown that the RO can be

written as
T, — Tov Tou _ Tou
NL

— _ NL NL
%_—TC—TOU _1+—%C—TOU ) (47)
ONL ONL
According to Egs. (42), (43) we now have
267[3%/1 o0 (5]%1)”
WLt g Sl /2 2
n=1
and ) 5
ov _ argy\ ar
2BT" =In <2De> (1/2) + . (49)

Therefore, the RO given by Eq. (48) is clearly heat bath memory dependent

4.8. Numerical simulation

We now compare the theoretical results with the numerical simulation for
the specific OU friction memory kernel. We have employed a unit mass m = 1
moving in a nonlinear potential with ag = 1, by = 1073, so the system relaxes
towards the steady state at x = (ag/by)/?. To implement the simulations, we
numerically integrate the pair of stochastic differential equations (31-32) by
means of the Heun method [56]. In all cases we have employed a number of
independent realizations of the noise N = 10°, obtaining a relative statistical
uncertainty of the order of 2 x 10~* for both MFPT and NLRT. For the
temporal discretization we have used a step of typically At = 3 x 1073, with
which the estimated error in the results associated with discretization has
been comparable to or lower than the statistical errors

A first series of simulations was performed to check the convergence to
the overdamped limit as one increases the friction value. One expects to
reach this limit when the time scale m /7, is much smaller that other time
scales in the problem, such as 7 and ~/ag. For 7 = 1 and the other used
parameters the condition becomes vy > 1. In Fig. 2 we show the First
Passage Time statistics (both mean value and standard deviation) and the
corresponding predictions from Egs. (35), (18), when varying ~,. We also
show the Nonlinear Relaxation Time, compared to the prediction Eq. (42).
We see that for 7y = 5 the agreement with theoretical results is very good,
with the simulation results converging perfectly to the theoretical predictions.

We next check the results for the MFPT statistics. In Fig. 3 we plot the
MFPT as a function of the placement of the absorbing barrier, for v, = 20
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Figure 2: FPT statistics and NLRT vs. o, forag =1,by = 1073, A= 1073, 7 =1, F; = 0.
Symbols and lines are simulation results and theoretical predictions, from Eqs. (35,18,42),
respectively. Circles and solid line: MFPT (t) (with absorbing barriers placed at z =
+1); squares and dashed line: standard deviation ((At)?)!/?; diamonds and dotted line:
Nonlinear Relaxation Time T'.
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Figure 3: MFPT vs. placement R of the absorbing barrier, for ag = 1, by = 1073,
A= 1073, v = 20, F; = 0.01. Symbols and lines indicate simulation and theoretical
results respectively. Black lines and circles: 7 = 0.1, red lines and squares: 7 = 1, blue
lines and diamonds: 7 = 10. Continuous lines: nonlinear predictions from Eq. (35); dashed
lines: linear approximation from Eq. (27); dotted line: nonlinear prediction from Ref. [19]
for 7 = 10.

18



100

( T T T I T
BN O <t> 1
2 12
J O
0L - <A > |
60 B \\\\\ ]
= \\\\
[l o ~ B
= \\\
40 I \\\\\ —]
20x] O\\C} _
- T \Q
N e 0 0 o
Ty o s
0 I | I | I 1 - |
0 5 10 15 20
T

Figure 4: FPT statistics vs. noise time correlation 7, for ag = 1, by = 1073, A = 1073,
Yo = 20, Fy = 0.01, and absorbing barriers placed at x = +1. Symbols and lines indicate
simulation and theoretical results respectively. Circles: MFPT (t); squares: standard
deviation ((At)2)1/2. Continuous lines: nonlinear predictions from Eq. (35,18); dashed
lines: predictions from Ref. [19].

and the external field Fy = 0.01. We have employed three values of the
correlation time 7 = 0.1, 1, 10. For these cases we plot both the linear
approximation from Eq. (27) and the nonlinear prediction from Eq. (35).
For the case 7 = 10 we also plot the nonlinear prediction from Ref. [19]. We
see that, whereas the linear prediction only works near the unstable state,
the nonlinear prediction has a much larger range of validity reaching the
neighborhoods of the stable final state. Note however that the prediction
diverges at exactly the stable state whereas the simulations provides finite
MFPT values at this point. We also see that the nonlinear prediction from
Ref. [19] is not very good for not very small correlation times.

The dependence of the predictions on the correlation time of the noise
is studied in more detail in the next pair of figures. First, in Fig. 4 the
FPT statistics is studied as a function of 7. Here, both MFPT and standard
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Figure 5: NLRT vs. noise time correlation 7, for ag = 1, by = 1073, A = 1073, 4o =
20, Fy = 0.01. Circles: simulation results; continuous lines: nonlinear predictions from
Eq. (35); dashed lines: predictions from Ref. [19].

deviation are compared to theoretical predictions from Eq. (35), (18). The-
oretical predictions from Ref. [19] are also plotted. In particular the MFPT
agrees very well in a large range of values of 7. We also see that results
from Ref. [19] predicts the correct Markovian result (at 7 = 0) but the 7
dependence is only qualitatively correct, with increasing differences as 7 is
raised. The theoretical results become wrong when approaching 7 = 20.
Note that for our parameters this corresponds to a7 = 1, for which our ap-
proach breaks down. The dependence on 7 of the standard deviations also
shows a fair agreement with theoretical predictions. For this last case we see
that results from Eq. (18) are slightly better that those of Ref. [19], although
both of them are quite similar.

In Fig. 5 we plot the NLRT versus the correlation time 7. We see that
the predictions from Eq. (35) compare very well to the simulation results,
showing a correct dependence on 7, except near the 7 = 20 value. This
agreement appears to be better than the prediction of Ref. [19], which only
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Figure 6: Relative change of RO, 98 — 1, vs. external force Fy, for ap = 1, by = 1073,
A =10"%, 49 = 20, and several values of 7. Symbols: simulation results; continuous lines:
theoretical predictions from Eq. (48); dashed lines: predictions from Ref. [19]. In the inset
a detailed view around the Markovian limit at Fy = 7 x 10~* is shown. Identical colors
correspond to the same values of 7.

provides the correct behavior near the Markovian limit.

In Fig. 6 we plot the RO R — 1, versus the external force Fj, for values
of ag = 1, by = 1073, X = 1074, 7y = 20, and several values of 7. We first
see that theoretical results of Eq. (48) predict a very weak dependence on
7, so that all curves in a large 7 span almost overlap each other (a more
detailed view is shown in the inset). For the smallest external forces we
see that simulation results for all 7 also coincide, and only for larger Fj the
results for the largest 7 values start to separate from theoretical results. In
the calculated range of forces, the theoretical result (48) is shown to agree
very well for 7 values up to the order of 1.0, but all curves remain very close
to the quasi-Markovian result 7 = 0.1.

We also see that predictions of Ref. [19] start to separate from simulations
at smaller values of Fyy. Predictions of Ref. [19] coincide with the numerical
simulation close to the Markovian limit, which was an expected result, but

21



002 T T T T T

0015 T -
e ——— 6 - -
5 - © O 0 1
= o
0.01+- _
0.005 ! | ! | ! | ! | ! |
70 1 2 3 4 5

Figure 7: Critical force for detection, according to the criterium related with SFPT in
Eq. 45, vs. 7, for ap = 1, by = 1073, A = 1073, 79 = 20. Simulations have been
performed for several values of Fjy at each 7, in order to find the value at which the change
in MFPT was greater than its standard deviation (see text). Circles: simulation results;
black continuous line: nonlinear prediction from Eq. (45); red dashed line: prediction from
Ref. [19].

when increasing 7 they exhibit a stronger dependence, with the curves moving
in the opposite direction than in simulations. In conclusion practically all
the curves coincide for forces up to values around F; = 0.0002, at which a
dependence on 7 starts to be built improving fR in simulation results but with
the contrary effect in the predictions of Ref. [19]. On the contrary our current
theory remains very close to the Markovian limit. Note that simulation
results show that Markovian signals are the most difficult to detect, thus the
Markovian case is the optimum one for marking the detector capability.

In Fig. 7 the critical force for detection, according to the SFPT criterion,
is represented as a function of the correlation time. For this figure a series
of simulations have been performed at each 7 by using several values of Fj,
and finding by interpolation the value F, of external force at which Eq. (44)
becomes an equality. We see that simulation results indicate a very weak
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dependence of F,, decreasing on 7. Thus, similarly to the Receiver Output
results, correlation time improves detection sensibility, and hence the Marko-
vian case marks the operational limits of the detector. Theoretical result of
Eq. (45) predicts a F, that does not depend on 7, remaining always equal
to the Markovian limit. This improves the prediction of Ref. [19], which
predicted a dependence on 7 which results to be opposite to simulations.

5. Concluding Remarks

Using the linear overdamped GLE with an arbitrary friction memory

kernel, we have been able to characterize, by means of SFPT, the decay
process of an unstable state for a charged Brownian particle embedded in
non-Markovian heat baths and under the action of an external electric field.
The versatility of the QD approach is shown to be effective even for arbitrary
friction memory kernel. In this linear regime the particular OU memory
kernel is used to calculate the SFPT.
Also we have shown that the OU memory kernel allows to characterize the
decay process of the unstable state when the nonlinear contribution of the
bistable potential is taken into account. In this case, we exactly calculate
the nonlinear SFPT and NLRT. The strategy of solution in this work is
new and the theoretical results have been compared with those of numerical
simulation showing excellent agreements.

For weak signals detection in OU heat baths, it has been shown that
the criterion related to the SFPT is heat bath memory independent, which
leads to the same critical value . = 1.36543 as in the Markovian heat bath.
Simulation results indicate a very weak, decreasing dependence on 7, whereas
the theoretical results of Ref. [19] the opposite dependence was obtained. A
similar situation occurs for the RO, in which theoretical predictions, even
being heat bath memory dependent, have an extremely weak dependence
on 7. Here, simulation results remain very close to the Markovian limit for
small external forces and for not large values of 7 as seen in Fig. 6. Thus
for both SFPT and RO criteria the current theory provides results close or
equal to the Markovian limit that, without being perfect, still improves the
older calculation of previous reference. The Markovian case has been shown
to mark the minimum force value at which the signal is guaranteed to be
detected regardless of its correlation time.

Finally, our study may be extended to analyze the problem of multi-
plicative noise [47, 48], the noise enhanced stability (NES) phenomenon
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149,

50, 51, 52|, also the mean switching time to detect weak signals [53],

as well as single photon detectors based on Josephson junctions [54].
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