3,992 research outputs found

    Development by Mechanochemistry of La0.8Sr0.2Ga0.8Mg0.2O2.8 Electrolyte for SOFCs

    Get PDF
    In this work, a mechanochemical process using high-energy milling conditions was employed to synthesize La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) powders from the corresponding stoichiometric amounts of La2O3, SrO, Ga2O3, and MgO in a short time. After 60 min of milling, the desired final product was obtained without the need for any subsequent annealing treatment. A half solid oxide fuel cell (SOFC) was then developed using LSGM as an electrolyte and La0.8Sr0.2MnO3 (LSM) as an electrode, both obtained by mechanochemistry. The characterization by X-ray diffraction of as-prepared powders showed that LSGM and LSM present a perovskite structure and pseudo-cubic symmetry. The thermal and chemical stability between the electrolyte (LSGM) and the electrode (LSM) were analyzed by dynamic X-ray diffraction as a function of temperature. The electrolyte (LSGM) is thermally stable up to 800 and from 900 °C, where the secondary phases of LaSrGa3O7 and LaSrGaO4 appear. The best sintering temperature for the electrolyte is 1400 °C, since at this temperature, LaSrGaO4 disappears and the percentage of LaSrGa3O7 is minimized. The electrolyte is chemically compatible with the electrode up to 800 °C. The powder sample of the electrolyte (LSGM) at 1400 °C observed by HRTEM indicates that the cubic symmetry Pm-3m is preserved. The SOFC was constructed using the brush-painting technique; the electrode-electrolyte interface characterized by SEM presented good adhesion at 800 °C. The electrical properties of the electrolyte and the half-cell were analyzed by complex impedance spectroscopy. It was found that LSGM is a good candidate to be used as an electrolyte in SOFC, with an Ea value of 0.9 eV, and the LSM sample is a good candidate to be used as cathode

    Youth and Expectations on Democracy in Spain: the Role of Individual Human Values Structure of Young People in Dimension of Democracy

    Get PDF
    Democracy is a form of social organization based on popular sovereignty. The rise of democracy has run in parallel to economic growth in society and this system of government has been increasingly adopted in other countries (Inglehart, 2005). The same concept has been defined over time in different ways according to their historical characteristics. According to Kluckhohn (1958), humans react to external stimuli as well as to their own interpretations of stimuli as per a cognitive framework defined by the cul-ture in which the individual is inserted. This research is aimed at learning how values influence the concept that young Spaniards have of democracy and determine how these affect each dimension, factor or element in which the study of this type of social organization can be divided. In order to carry out this research we are using data from the sixth round of the European Social Survey (ESS) conducted in 2012. The sample consists of two groups, one with individuals aged 18 to 30 and a second group with people over 30 years of age. Results indicate that democracy —and its elements— is not an ideal concept, or it should not be seen as an invariable, objective concept, external to citizens. It is rather an adaptive and evolving instrument, consubstantial to each individual’s vital experience and society’s in its whole in which values have a joint function between the macro and the micro-social groups

    Innovative concepts of Integrated Solar Combined Cycles (ISCC) using a Solid Oxide Fuel Cell (SOFC)

    Get PDF
    Concentrating Solar Power (CSP) is one of the most promising ways for electricity production of the upcoming years with high penetration of intermittent renewable energy sources such as wind and solar-photovoltaics. This is due to the fact that CSP when coupled to Thermal Energy Storage (TES) system enables large, inexpensive and flexible energy dispatch, which contributes to energy grid stabilization. At the same time, TES allows for steady operation of the power block by reducing undesirable fluctuations due to weather transient conditions and increasing the number of hours that the power block operates at design conditions 1. Despite the abovementioned advantages of CSP systems, a step further is needed for increase overall system efficiency and decrease CO2 emissions. Several studies have been performed considering high efficiency plant layouts such as combined cycle. For the latter, several works have been investigated about solar integration of combined cycle using parabolic trough and solar tower technologies. In both cases, solar energy was used for water/steam preheating and evaporation steps of the Rankine cycle in combination with the exhaust gases of fossil-fuel gas turbine engine. However, no research has been performed considering ISCC coupled with a Solid Oxide Fuel Cell (SOFC). In this research, two innovative layouts of ISCC power plants will be analyzed. First considers a ISCC based on solar tower and second a ISCC with a parabolic trough collector field coupled to the Heat Recovery Steam Generator (HRSG). The objective of this research is analyze the energy behavior of both layouts, selecting the best ISCC scheme to be coupled with a SOFC. The simulations will be performed using Thermoflex software. In both layouts, a SOFC is introduced before the combustion chamber at the topping cycle, and a Rankine cycle (bottoming cycle) with 2 pressures is considered.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A Multi-Criteria Reference Point Based Approach for Assessing Regional Innovation Performance in Spain

    Full text link
    [EN] The evaluation of regional innovation performance through composite innovation indices can serve as a valuable tool for policy-making. While discussion on the best methodology to construct composite innovation indices continues, we are interested in deepening the use of reference levels and the aggregation issue. So far, additive aggregation methods are, largely, the most widespread aggregation rule, thus allowing for full compensability among single indicators. In this paper, we present an integrated assessment methodology to evaluate regional innovation performance using the Multi-Reference Point based Weak and Strong Composite Indicator (MRP-WSCI) approach, which allows defining reference levels and different degrees of compensability. As an example of application to the Regional Innovation Scoreboard, the proposed technique is developed to measure the innovation performance of Spain¿s regions taking into account Spanish and European reference levels. The main features of the proposed approach are: (i) absolute or relative reference levels could be previously defined by the decision maker; (ii) by establishing the reference levels, the resulting composite innovation index is an easy-to-interpret measure; and (iii) the non-compensatory strong composite indicator provides an additional layer of information for policy-making (iv) a visualization tool called Light-Diagram is proposed to track the specific strengths and weaknesses of the regions' innovation performance.This research has been partially supported by the Spanish Ministry of Economy and Competitiveness (Project ECO2016-76567-C4-4-R), by the Regional Government of Andalucia (research group SEJ-417), and by the ERDF funds (Project UMA18-FEDERJA-065).Garcia-Bernabeu, A.; Cabello, JM.; Ruiz, F. (2020). A Multi-Criteria Reference Point Based Approach for Assessing Regional Innovation Performance in Spain. Mathematics. 8(5):1-21. https://doi.org/10.3390/math8050797S12185Hauser, C., Siller, M., Schatzer, T., Walde, J., & Tappeiner, G. (2018). Measuring regional innovation: A critical inspection of the ability of single indicators to shape technological change. Technological Forecasting and Social Change, 129, 43-55. doi:10.1016/j.techfore.2017.10.019Makkonen, T., & van der Have, R. P. (2012). Benchmarking regional innovative performance: composite measures and direct innovation counts. Scientometrics, 94(1), 247-262. doi:10.1007/s11192-012-0753-2Asheim, B. T., Smith, H. L., & Oughton, C. (2011). Regional Innovation Systems: Theory, Empirics and Policy. Regional Studies, 45(7), 875-891. doi:10.1080/00343404.2011.596701Buesa, M., Heijs, J., & Baumert, T. (2010). The determinants of regional innovation in Europe: A combined factorial and regression knowledge production function approach. Research Policy, 39(6), 722-735. doi:10.1016/j.respol.2010.02.016Di Cagno, D., Fabrizi, A., Meliciani, V., & Wanzenböck, I. (2016). The impact of relational spillovers from joint research projects on knowledge creation across European regions. Technological Forecasting and Social Change, 108, 83-94. doi:10.1016/j.techfore.2016.04.021Capello, R., & Lenzi, C. (2012). Territorial patterns of innovation: a taxonomy of innovative regions in Europe. The Annals of Regional Science, 51(1), 119-154. doi:10.1007/s00168-012-0539-8Navarro, M., Gibaja, J. J., Bilbao-Osorio, B., & Aguado, R. (2009). Patterns of Innovation in EU-25 Regions: A Typology and Policy Recommendations. Environment and Planning C: Government and Policy, 27(5), 815-840. doi:10.1068/c0884rPinto, H. (2009). The Diversity of Innovation in the European Union: Mapping Latent Dimensions and Regional Profiles. European Planning Studies, 17(2), 303-326. doi:10.1080/09654310802553571Ruiz, F., El Gibari, S., Cabello, J. M., & Gómez, T. (2020). MRP-WSCI: Multiple reference point based weak and strong composite indicators. Omega, 95, 102060. doi:10.1016/j.omega.2019.04.003Hollenstein, H. (1996). A composite indicator of a firm’s innovativeness. An empirical analysis based on survey data for Swiss manufacturing. Research Policy, 25(4), 633-645. doi:10.1016/0048-7333(95)00874-8Gu *, W., & Tang, J. (2004). Link between innovation and productivity in Canadian manufacturing industries. Economics of Innovation and New Technology, 13(7), 671-686. doi:10.1080/1043890410001686806Tang, J., & Le, C. D. (2007). Multidimensional Innovation and Productivity. Economics of Innovation and New Technology, 16(7), 501-516. doi:10.1080/10438590600914585Kumar, S., Haleem, A., & Sushil. (2019). Assessing innovativeness of manufacturing firms using an intuitionistic fuzzy based MCDM framework. Benchmarking: An International Journal, 26(6), 1823-1844. doi:10.1108/bij-12-2017-0343Grupp, H., & Mogee, M. E. (2004). Indicators for national science and technology policy: how robust are composite indicators? Research Policy, 33(9), 1373-1384. doi:10.1016/j.respol.2004.09.007Schibany, A., & Streicher, G. (2008). The European Innovation Scoreboard: drowning by numbers? Science and Public Policy, 35(10), 717-732. doi:10.3152/030234208x398512Kozłowski, J. (2015). Innovation indices: the need for positioning them where they properly belong. Scientometrics, 104(3), 609-628. doi:10.1007/s11192-015-1632-4Carayannis, E. G., Goletsis, Y., & Grigoroudis, E. (2018). Composite innovation metrics: MCDA and the Quadruple Innovation Helix framework. Technological Forecasting and Social Change, 131, 4-17. doi:10.1016/j.techfore.2017.03.008Greco, S., Ishizaka, A., Tasiou, M., & Torrisi, G. (2018). On the Methodological Framework of Composite Indices: A Review of the Issues of Weighting, Aggregation, and Robustness. Social Indicators Research, 141(1), 61-94. doi:10.1007/s11205-017-1832-9El Gibari, S., Gómez, T., & Ruiz, F. (2018). Building composite indicators using multicriteria methods: a review. Journal of Business Economics, 89(1), 1-24. doi:10.1007/s11573-018-0902-zRuiz, F., Cabello, J. M., & Luque, M. (2011). An application of reference point techniques to the calculation of synthetic sustainability indicators. Journal of the Operational Research Society, 62(1), 189-197. doi:10.1057/jors.2009.187Cabello, J. M., Ruiz, F., Pérez-Gladish, B., & Méndez-Rodríguez, P. (2014). Synthetic indicators of mutual funds’ environmental responsibility: An application of the Reference Point Method. European Journal of Operational Research, 236(1), 313-325. doi:10.1016/j.ejor.2013.11.031Ruiz, F., Cabello, J. M., & Pérez-Gladish, B. (2018). Building Ease-of-Doing-Business synthetic indicators using a double reference point approach. Technological Forecasting and Social Change, 131, 130-140. doi:10.1016/j.techfore.2017.06.005El Gibari, S., Gómez, T., & Ruiz, F. (2018). Evaluating university performance using reference point based composite indicators. Journal of Informetrics, 12(4), 1235-1250. doi:10.1016/j.joi.2018.10.003Mazziotta, M., & Pareto, A. (2017). Measuring Well-Being Over Time: The Adjusted Mazziotta–Pareto Index Versus Other Non-compensatory Indices. Social Indicators Research, 136(3), 967-976. doi:10.1007/s11205-017-1577-5Munda, G., & Nardo, M. (2009). Noncompensatory/nonlinear composite indicators for ranking countries: a defensible setting. Applied Economics, 41(12), 1513-1523. doi:10.1080/00036840601019364Cabello, J. M., Navarro, E., Prieto, F., Rodríguez, B., & Ruiz, F. (2014). Multicriteria development of synthetic indicators of the environmental profile of the Spanish regions. Ecological Indicators, 39, 10-23. doi:10.1016/j.ecolind.2013.11.01

    Damage and spatiotemporal dynamics of the Ngaio flat mite, Brevipalpus ferraguti (Trombidiformes: Tenuipalpidae), with observations on the development of the female insemination system

    Full text link
    [EN] We studied the Ngaio flat mite, Brevipalpus ferraguti Ochoa & Beard, on Myoporum laetum (Scrophulariaceae), a common introduced plant used as hedgerows in gardens and green areas of the Mediterranean, where the mite causes considerable damage. We first describe the damage, and then the patterns of mite seasonal abundance and spatial distribution. Finally, we address the development of the female insemination system at the population level. Damage occurs on both sides of the leaves, starting with a uniform stippling and bronzing and ending in the leaves drying out and extensive defoliation that coincides with summer. Mite population peaked between June and August, maintained moderate levels in autumn and winter and reached its lowest density in early spring. Active motile immatures and eggs were present throughout the year. Females and motile immature forms were more abundant on the abaxial (lower) leaf surface, but eggs were deposited on both surfaces indistinctly, suggesting that females actively move to the adaxial (upper) surface in summer to oviposit. All the developmental stages were aggregated on the leaves throughout the year regardless of their population density. Our study suggests that a binomial or presenceabsence sampling, examining only the number of females on the abaxial surface, can accurately estimate the total mite density levels. Only 23.5% of females possessed a fully developed spermatheca, whereas in 76.5% of the cases the seminal receptacle was not present or not developed. Females with a complete spermatheca were less abundant in summer. Average temperatures and host plant species affected the occurrence of this reproductive structure.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.Escobar-Garcia, HA.; Ferragut Pérez, FJ. (2022). Damage and spatiotemporal dynamics of the Ngaio flat mite, Brevipalpus ferraguti (Trombidiformes: Tenuipalpidae), with observations on the development of the female insemination system. Experimental and Applied Acarology. 86(1):73-90. https://doi.org/10.1007/s10493-021-00670-y739086

    Natural Language Interaction to Facilitate Mental Models of Remote Robots

    Get PDF

    Natural Language Interaction to Facilitate Mental Models of Remote Robots

    Get PDF
    Increasingly complex and autonomous robots are being deployed in real-world environments with far-reaching consequences. High-stakes scenarios, such as emergency response or offshore energy platform and nuclear inspections, require robot operators to have clear mental models of what the robots can and can't do. However, operators are often not the original designers of the robots and thus, they do not necessarily have such clear mental models, especially if they are novice users. This lack of mental model clarity can slow adoption and can negatively impact human-machine teaming. We propose that interaction with a conversational assistant, who acts as a mediator, can help the user with understanding the functionality of remote robots and increase transparency through natural language explanations, as well as facilitate the evaluation of operators' mental models.Comment: In Workshop on Mental Models of Robots at HRI 202

    A Reference Point-Based Proposal to Build Regional Quality of Life Composite Indicators

    Full text link
    [EN] There is a growing interest in research on the role that space plays in defining and measuring well-being or quality of life. In this paper, we propose to evaluate the regional quality of life using the Multi-Reference Point based Weak Strong Composite Indicator approach, to further enhance the quality of the sub-national analysis. The major motivation is to facilitate assessing the regional quality of life performance at different geographical scales and compensability levels. As an example of application, we compute the composite indicators for 19 Spanish regions to paint a comprehensive picture of the regional quality of life using two different geographical scales: the Spanish and the European ones. Moreover, we provide warning signals to regional, national and European policy-makers on the quality of life dimensions in which each region needs further improvements.This research was partially funded by the Spanish Ministry of Economy and Competitiveness (Project PID2019-104263RB-C42), from the Regional Government of Andalucía (Project P18-RT-1566), and by the EU ERDF operative program (Project UMA18-FEDERJA-065)Garcia-Bernabeu, A.; Cabello, JM.; Ruiz, F. (2021). A Reference Point-Based Proposal to Build Regional Quality of Life Composite Indicators. Social Indicators Research (Online). 1-20. https://doi.org/10.1007/s11205-021-02818-0S120Blancas, F., Caballero, R., González, M., Lozano-Oyola, M., & Pérez, F. (2010). Goal programming synthetic indicators: An application for sustainable tourism in andalusian coastal counties. Ecological Economics, 69(11), 2158–2172.Boggia, A., Massei, G., Pace, E., Rocchi, L., Paolotti, L., & Attard, M. (2018). Spatial multicriteria analysis for sustainability assessment: A new model for decision making. Land Use Policy, 71, 281–292.Booysen, F. (2002). An overview and evaluation of composite indices of development. Social Indicators Research, 59(2), 115–151.Cabello, J. M., Ruiz, F., Pérez-Gladish, B., & Méndez-Rodríguez, P. (2014). Synthetic indicators of mutual fund’s environmental responsibility: An application of the Reference Point Method. European Journal of Operational Research, 236(1), 313–325.Costa, D. S. (2015). Reflective, causal, and composite indicators of quality of life: A conceptual or an empirical distinction? Quality of Life Research, 24(9), 2057–2065.Durand, M. (2015). The OCDE better life initiative: How’s life? and the measurement of well-being. Review of Income and Wealth, 61(1), 4–17.El Gibari, S., Cabello, J. M., Gómez, T., & Ruiz, F. (2021). Composite indicators as decision making tools: The joint use of compensatory and non-compensatory schemes. International Journal of Information Technology and Decision Making, 20(3), 847–879.El Gibari, S., Gómez, T., & Ruiz, F. (2018). Evaluating university performance using reference point based composite indicators. Journal of Informetrics, 12(4), 1235–1250.El Gibari, S., Gómez, T., & Ruiz, F. (2019). Building composite indicators using multicriteria methods: A review. Journal of Business Economics, 89(1), 1–24.European Commission: Eurostat quality of life database. (2020). url http://ec.europa.eu/eurostat/data/database.Freudenberg, M. (2003). Composite indicators of country performance.Garcia-Bernabeu, A., Cabello, J. M., & Ruiz, F. (2020). A multi-criteria reference point based approach for assessing regional innovation performance in Spain. Mathematics, 8(5), 797.Goerlich, F. J., & Reig, E. (2021). Quality of life ranking of spanish cities: A non-compensatory approach. Cities, 109, 102979.Greco, S., Ishizaka, A., Tasiou, M., & Torrisi, G. (2018). On the methodological framework of composite indices: A review of the issues of weighting, aggregation, and robustness. Social Indicators Research, 141, 61–94.Greyling, T., & Tregenna, F. (2017). Construction and analysis of a composite quality of life index for a region of South Africa. Social Indicators Research, 131(3), 887–930.Hagerty, M. R., Cummins, R., Ferriss, A. L., Land, K., Michalos, A. C., Peterson, M., et al. (2001). Quality of life indexes for national policy: Review and agenda for research. Bulletin of Sociological Methodology/Bulletin de Méthodologie Sociologique, 71(1), 58–78.INE: Indicadores de calidad de vida. (2020). url https://cutt.ly/Zj0L0qX.Ivaldi, E., Bonatti, G., Soliani, R., et al. (2014). Composite index for quality of life in italian cities: An application to urbes indicators. Review of Economics and Finance, 4(4)Karagiannis, R., & Karagiannis, G. (2020). Constructing composite indicators with shannon entropy: The case of human development index. Socio-Economic Planning Sciences, 70, 100701.Lagas, P., van Dongen, F., van Rijn, F., & Visser, H. (2015). Regional quality of living in Europe. Region, 2(2), 1–26.Malkina-Pykh, I. G., & Pykh, Y. A. (2008). Quality-of-life indicators at different scales: Theoretical background. Ecological Indicators, 8(6), 854–862.Marchante, A. J., & Ortega, B. (2006). Quality of life and economic convergence across Spanish regions, 1980–2001. Regional Studies, 40(5), 471–483.Mazziotta, M., & Pareto, A. (2016). On a generalized non-compensatory composite index for measuring socio-economic phenomena. Social Indicators Research, 127(3), 983–1003.Mazziotta, M., & Pareto, A. (2020). Composite indices construction: The performance interval approach. Social Indicators Research pp. 1–11.Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffman, A., & Giovannini, E. (2008). Handbook on constructing composite indicators.OECD: Handbook on constructing composite indicators: methodology and user guide. (2008). Paris: OECD publishing.Patil, G.R., & Sharma, G. (2020). Urban quality of life: An assessment and ranking for indian cities. Transport Policy.Royuela, V., Suriñach, J., & Reyes, M. (2003). Measuring quality of life in small areas over different periods of time. Social Indicators Research, 64(1), 51–74.Ruiz, F., Cabello, J. M., & Luque, M. (2011). An application of reference point techniques to the calculation of synthetic sustainability indicators. Journal of the Operational Research Society, 62(1), 189–197.Ruiz, F., Cabello, J. M., & Pérez-Gladish, B. (2018). Building ease-of-doing-business synthetic indicators using a double reference point approach. Technological Forecasting and Social Change, 131, 130–140.Ruiz, F., El Gibari, S., Cabello, J.M., & Gómez, T. (2019). MRP-WSCI: Multiple reference point based weak and strong composite indicators. Omega.Saisana, M., & Tarantola, S. (2002). State-of-the-art report on current methodologies and practices for composite indicator development. Ispra: Joint Research Centre.Stiglitz, J.E., Sen, A., Fitoussi, J.P., et al. (2009). Report by the commission on the measurement of economic performance and social progress
    • …
    corecore