282 research outputs found

    Criticality and quenched disorder: rare regions vs. Harris criterion

    Get PDF
    We employ scaling arguments and optimal fluctuation theory to establish a general relation between quantum Griffiths singularities and the Harris criterion for quantum phase transitions in disordered systems. If a clean critical point violates the Harris criterion, it is destabilized by weak disorder. At the same time, the Griffiths dynamical exponent z′z' diverges upon approaching the transition, suggesting unconventional critical behavior. In contrast, if the Harris criterion is fulfilled, power-law Griffiths singularities can coexist with clean critical behavior but z′z' saturates at a finite value. We present applications of our theory to a variety of systems including quantum spin chains, classical reaction-diffusion systems and metallic magnets; and we discuss modifications for transitions above the upper critical dimension. Based on these results we propose a unified classification of phase transitions in disordered systems.Comment: 4.5 pages, 1 eps figure, final version as publishe

    Infinite-noise criticality: Nonequilibrium phase transitions in fluctuating environments

    Get PDF
    We study the effects of time-varying environmental noise on nonequilibrium phase transitions in spreading and growth processes. Using the examples of the logistic evolution equation as well as the contact process, we show that such temporal disorder gives rise to a distinct type of critical points at which the effective noise amplitude diverges on long time scales. This leads to enormous density fluctuations characterized by an infinitely broad probability distribution at criticality. We develop a real-time renormalization-group theory that provides a general framework for the effects of temporal disorder on nonequilibrium processes. We also discuss how general this exotic critical behavior is, we illustrate the results by computer simulations, and we touch upon experimental applications of our theory.Comment: 6 pages (including 3 eps figures). Final version as publishe

    Local defect in a magnet with long-range interactions

    Get PDF
    We investigate a single defect coupling to the square of the order parameter in a nearly critical magnet with long-range spatial interactions of the form r−(d+σ)r^{-(d+\sigma)}, focusing on magnetic droplets nucleated at the defect while the bulk system is in the paramagnetic phase. Because of the long-range interaction, the droplet develops a power-law tail which is energetically unfavorable. However, as long as σ>0\sigma>0, the tail contribution to the droplet free energy is subleading in the limit of large droplets; and the free energy becomes identical to the case of short-range interactions. We also study the droplet quantum dynamics with and without dissipation; and we discuss the consequences of our results for defects in itinerant quantum ferromagnets.Comment: 8 pages, 5 eps figures, final version, as publishe

    Rounding of a first-order quantum phase transition to a strong-coupling critical point

    Get PDF
    We investigate the effects of quenched disorder on first-order quantum phase transitions on the example of the NN-color quantum Ashkin-Teller model. By means of a strong-disorder renormalization group, we demonstrate that quenched disorder rounds the first-order quantum phase transition to a continuous one for both weak and strong coupling between the colors. In the strong coupling case, we find a distinct type of infinite-randomness critical point characterized by additional internal degrees of freedom. We investigate its critical properties in detail, and we discuss broader implications for the fate of first-order quantum phase transitions in disordered systems.Comment: 5 pages, 4 figure

    Rare regions and Griffiths singularities at a clean critical point: The five-dimensional disordered contact process

    Get PDF
    We investigate the nonequilibrium phase transition of the disordered contact process in five space dimensions by means of optimal fluctuation theory and Monte Carlo simulations. We find that the critical behavior is of mean-field type, i.e., identical to that of the clean five-dimensional contact process. It is accompanied by off-critical power-law Griffiths singularities whose dynamical exponent z′z' saturates at a finite value as the transition is approached. These findings resolve the apparent contradiction between the Harris criterion which implies that weak disorder is renormalization-group irrelevant and the rare-region classification which predicts unconventional behavior. We confirm and illustrate our theory by large-scale Monte-Carlo simulations of systems with up to 70570^5 sites. We also relate our results to a recently established general relation between the Harris criterion and Griffiths singularities [Phys. Rev. Lett. {\bf 112}, 075702 (2014)], and we discuss implications for other phase transitions.Comment: 10 pages, 5 eps figures included, applies the optimal fluctuation theory of arXiv:1309.0753 to the contact proces

    Dissipation effects in percolating quantum Ising magnets

    Full text link
    We study the effects of dissipation on a randomly dilute transverse-field Ising magnet at and close to the percolation threshold. For weak transverse fields, a novel percolation quantum phase transition separates a super-paramagnetic cluster phase from an inhomogeneously ordered ferromagnetic phase. The properties of this transition are dominated by large frozen and slowly fluctuating percolation clusters. Implementing numerically a strong-disorder real space renormalization group technique, we compute the low-energy density of states which is found to be in good agreement with the analytical prediction.Comment: 2 pages, 1 eps figure, final version as publishe

    Emergent SU(3) symmetry in random spin-1 chains

    Get PDF
    We show that generic SU(2)-invariant random spin-1 chains have phases with an emergent SU(3) symmetry. We map out the full zero-temperature phase diagram and identify two different phases: (i) a conventional random singlet phase (RSP) of strongly bound spin pairs (SU(3) "mesons") and (ii) an unconventional RSP of bound SU(3) "baryons", which are formed, in the great majority, by spin trios located at random positions. The emergent SU(3) symmetry dictates that susceptibilities and correlation functions of both dipolar and quadrupolar spin operators have the same asymptotic behavior.Comment: 5 pages plus 3-page Supplemental Material, 5 figures; published versio

    Dissipation effects in random transverse-field Ising chains

    Get PDF
    We study the effects of Ohmic, super-Ohmic, and sub-Ohmic dissipation on the zero-temperature quantum phase transition in the random transverse-field Ising chain by means of an (asymptotically exact) analytical strong-disorder renormalization-group approach. We find that Ohmic damping destabilizes the infinite-randomness critical point and the associated quantum Griffiths singularities of the dissipationless system. The quantum dynamics of large magnetic clusters freezes completely which destroys the sharp phase transition by smearing. The effects of sub-Ohmic dissipation are similar and also lead to a smeared transition. In contrast, super-Ohmic damping is an irrelevant perturbation; the critical behavior is thus identical to that of the dissipationless system. We discuss the resulting phase diagrams, the behavior of various observables, and the implications to higher dimensions and experiments.Comment: 18 pages, 3 figures; (v2) minor changes, published versio
    • …
    corecore