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Abstract – We study the effects of time-varying environmental noise on nonequilibrium phase
transitions in spreading and growth processes. Using the examples of the logistic evolution equa-
tion as well as the contact process, we show that such temporal disorder gives rise to a distinct
type of critical points at which the effective noise amplitude diverges on long time scales. This
leads to enormous density fluctuations characterized by an infinitely broad probability distribu-
tion at criticality. We develop a real-time renormalization-group theory that provides a general
framework for the effects of temporal disorder on nonequilibrium processes. We also discuss how
general this exotic critical behavior is, we illustrate the results by computer simulations, and we
touch upon experimental applications of our theory.

Copyright c© EPLA, 2015

Introduction. – Systems far from thermodynamic
equilibrium can undergo abrupt transitions between differ-
ent nonequilibrium steady states. These nonequilibrium
phase transitions feature collective behavior over long dis-
tances and times just as thermodynamic equilibrium tran-
sitions. Examples are found in the extinction dynamics of
epidemics and bio-populations as well as in surface growth,
turbulent flow, and catalytic reactions [1–7].

Nonequilibrium processes often occur in spatially inho-
mogeneous systems and time-varying environments, i.e.,
in the presence of spatial and temporal disorder. Spatial
disorder can have dramatic effects on nonequilibrium tran-
sitions. For example, it destroys the ubiquitous directed
percolation (DP) [8] universality class and produces an
exotic infinite-randomness critical point [9–15]. The asso-
ciated Griffiths phases are dominated by rare fluctuations
and feature anomalous power-law relaxation [16,17]. Sim-
ilar behavior is found in percolating [18,19] and quasiperi-
odic [20] systems (for a review, see ref. [21]).

The effects of environmental noise, i.e., temporal dis-
order, have attracted less attention. Kinzel [22] showed
that temporal disorder destabilizes the DP transition be-
cause its correlation time exponent ν‖ = ν⊥z violates the
generalized Harris criterion ν‖ ≥ 2. Jensen [23,24] em-
ployed series expansions and Monte Carlo simulations to

determine the fate of the DP transition with temporal dis-
order and reported nonuniversal critical exponents. In an
intriguing paper, Vazquez et al. [25] demonstrated that
rare noise fluctuations can lead to a temporal analog of the
Griffiths phase, featuring an unusual power-law relation
between lifetime and system size. Environmental noise
has also been studied within space-independent (single-
variable) models of biological population dynamics (see,
e.g., refs. [26–28]). Despite these efforts, a general frame-
work for understanding nonequilibrium phase transitions
in the presence of external noise is still lacking.

In this letter, we therefore study the effects of envi-
ronmental noise on two prototypical models of spreading
and growth processes: the space-independent (mean-field)
logistic evolution equation and the spatially extended con-
tact process. In both cases, we find highly unusual behav-
ior close to the extinction transition. It is characterized by
a diverging effective noise amplitude and enormous den-
sity fluctuations on long time scales, motivating the name
“infinite-noise critical point”. Infinite-noise critical be-
havior can be seen as counterpart of infinite-randomness
critical behavior in spatially disordered systems, but with
exchanged roles of space and time.

In the remainder of this letter, we first consider the
logistic evolution equation where a clear picture of the
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infinite-noise physics emerges from an asymptotically ex-
act random-walk approach. To establish a framework for
the analysis of temporal disorder, we develop a real-time
renormalization group (RG). We then apply the RG to our
second model, the contact process, and find that the DP
critical behavior of the pure problem gets replaced by an
infinite-noise critical point as well. We confirm key find-
ings by computer simulations, and we discuss applications.

Logistic equation. – The logistic evolution equation

ρ̇(t) = [λ(t) − μ(t)]ρ(t) − λ(t)ρ2(t). (1)

describes a variety of growth processes in nature, with
applications as diverse as biological population dynam-
ics [29], catalytic chemical reactions [30], and even lin-
guistics [31]. In the context of epidemic spreading, ρ is
the density of infected individuals, μ is the rate at which
sick individuals heal while λ corresponds to the rate at
which a healthy individual is infected by sick ones. If λ
and μ are time independent, the behavior is easily under-
stood; the epidemic dies out exponentially for λ < μ and
survives for infinite time for λ > μ. At the critical point,
λ = μ, the density decays to zero, but only as a power law,
ρ ∼ 1/t. Environmental noise, i.e., temporal disorder, can
be introduced by making the healing and infection rates
time dependent. For definiteness, we consider the rates to
be piecewise constant, μ(t) = μn and λ(t) = λn, over time
intervals Δtn. The μn and λn are independently drawn
from probability distributions Wμ(μ) and Wλ(λ).

If the healing and infection rates are time independent,
eq. (1) can be solved in closed form. Using this solution
within each time interval of constant rates yields a linear
recurrence for the inverse density,

ρ−1
n+1 = anρ−1

n + cn. (2)

ρn is the density at the start of time interval n. The
multipliers an = exp[(μn −λn)Δtn] reflect the exponential
growth or decay due to the linear term in eq. (1). The
constants cn = (an−1)λn/(μn−λn) are only important for
large densities; they limit the growth and prevent ρn > 1.
The time evolution is thus a random sequence of decay
and spreading segments during which the density ρ either
decreases or increases, depending on the balance between
μ(t) and λ(t). This is illustrated in fig. 1. Neglecting
the cn in the recurrence (2) for the moment, we see that
the logarithm of the density, xn = − ln ρn, performs a
simple random walk, xn+1 = xn + ln an. The effect of the
cn can be approximated by a reflecting boundary for this
random walk at x = 0. It limits the xn to positive values.

The reflected-random-walk theory allows us to find the
time evolution of the full probability distribution of the
density rather than just its average. If the evolution starts
from a fully infected system, ρ0 = 1, the probability dis-
tribution Pn(x) after a large number n of time intervals is
given by (for x ≥ 0)

Pn(x) =
2√

2πσ2n
e− (x−vn)2

2σ2n − 2v

σ2 e
2vx
σ2 Φ

(−x − vn

σn1/2

)
. (3)
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Fig. 1: (Color online) Density ρ(t) of individual noise realiza-
tions, plotted as x = − ln ρ vs. t. The logistic evolution results
are obtained from eq. (1) with λ = 1, Δt = 1 and binary disor-
der Wμ(μ) = pδ(μ−μh)+(1−p)δ(μ−μl) with μh = 2, μl = 0.5
and p = pc = 1/3. The 2d contact process data stem from a
Monte Carlo simulation of 10002 sites using μ = 1, Δt = 2 and
Wλ(λ) = pδ(λ−λh)+(1−p)δ(λ−λl) with λh = 3.65, λl = 0.365
and p = 0.8. Inset: schematic of the RG. In each step, the seg-
ment with the smallest change of x = − ln ρ is eliminated.

Here, Φ is the cumulative normal distribution, v = 〈ln a〉
yields the drift of Pn(x), and σ2 = 〈ln2 a〉−〈ln a〉2 gives its
width. (〈. . .〉 denotes the average over Wμ(μ) and Wλ(λ).)
The solution (3) can be verified by inserting Pn(x) into
the drift-diffusion equation ∂nP = (σ2/2)∂2

xP − v∂xP
with flux-free boundary condition vP − (σ2/2)∂xP = 0 at
x = 0.

By inspecting the distribution Pn(x), we can identify
three different regimes: v < 0 corresponds to the active
phase in which the epidemic survives for infinite time.
v > 0 is the inactive phase in which the epidemic dies out,
and v = 0 is the critical point separating the two. v thus
serves as a measure for the distance from criticality. We
now discuss the regimes in more detail.

In the active phase, v < 0, Pn(x) approaches the sta-
tionary distribution P (x) = (2|v|/σ2) exp[−2|v|x/σ2] in
the long-time limit. The distribution Pρ(ρ) = ρ−1+1/κ/κ
of the density itself is highly singular and characterized
by a nonuniversal Griffiths exponent κ = σ2/(2|v|) that
diverges at criticality. The average stationary density is
given by 〈ρ〉 = 〈exp(−x)〉 = 1/(1 + κ) while the typical
density reads ρtyp = exp(−〈x〉) = exp(−κ). Close to crit-
icality, the average density (which is dominated by rare
events) is much larger than the typical one.

At the critical point, v = 0, the distribu-
tion Pn(x) simplifies to a half-Gaussian, Pn(x) =
2(2πσ2n)−1/2 exp[−x2/(2σ2n)], that broadens without
limit with increasing time. This clearly illustrates the
notion of infinite-noise criticality. For long times, the
average density thus decays as 〈ρn〉 = 〈exp(−xn)〉 =
2(2πσ2n)−1/2 ∼ t−1/2. In contrast, the typical den-
sity decays much faster, ρtyp

n = exp(−〈xn〉) =
exp[−(2σ2n/π)1/2], implying ln ρtyp ∼ −t1/2.
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The inactive phase, v > 0, is more conventional as
the entire distribution Pn(x) moves to larger x with in-
creasing time. Thus, the density of almost all noise re-
alizations rapidly vanishes such that both average and
typical densities decay exponentially with time. Specifi-
cally ρtyp

n ∼ exp(−vn), while 〈ρn〉 ∼ exp[−nv2/(2σ2)] for
v ≤ σ2 and 〈ρn〉 ∼ exp[−n(v−σ2/2)] for v ≥ σ2. The cor-
relation time ξt is given by the time when the off-critical
Pn(x) starts deviating significantly from its critical coun-
terpart. This yields ξt = (σ2/v2)Δt.

We can cast these results in the language of critical phe-
nomena by comparing our results with the definitions of
the critical exponents, 〈ρ〉 ∼ t−δ at criticality, 〈ρ〉 ∼ |v|β
in the active phase, and ξt ∼ |v|−ν‖ . The exponent values

δ = 1/2, β = 1, ν‖ = 2 (4)

differ from the “clean” ones (δ = 1, β = 1, ν‖ = 1 [3])
but fulfill the scaling relation δ = β/ν‖, and ν‖ saturates
Kinzel’s bound ν‖ ≥ 2 [22]. What about the correlation
length? The logistic equation does not contain any notion
of space. However, if it describes a d-dimensional system
of N individuals, we can introduce a length scale L ∼
N1/d. It is clear that the critical dynamics changes when
the typical density ρtyp

n = exp[−(2σ2n/π)1/2] becomes of
order of 1/N . This suggests an exponential dependence
between correlation length ξ and correlation time ξt,

ln ξ ∼ ξω
t with ω = 1/2. (5)

The dynamical exponent z is thus formally zero, and the
correlation length exponent ν⊥ = ν‖/z is infinite. This
highly unusual dynamical scaling is analogous to the acti-
vated scaling at infinite-randomness critical points in spa-
tially disordered systems [32,33], but with the roles played
by space and time exchanged.

To illustrate and verify the reflected-random-walk
theory, we have solved the logistic equation (1) numeri-
cally. Figure 2 shows the resulting Pn(x) and 〈ρ(t)〉. All
data confirm our predictions. We have also verified the
stationary distribution P (x) = (2|v|/σ2) exp[−2|v|x/σ2]
in the active phase close to criticality.

The knowledge of the full density distribution allows us
to obtain many additional results. The typical lifetime τN

of a finite system of N sites in the active phase can be
estimated from the probability that the density is below
1/N . This yields τ−1

N ∼ ∫ 1/N

0 dρPρ(ρ) ∼ N−1/κ. At crit-
icality, the condition ρtyp(τN ) = 1/N gives τN ∼ ln2(N),
and in the inactive phase we find τN ∼ ln(N). All these
lifetimes agree with the Langevin results of ref. [25].

Real-time renormalization group. – To establish
a general framework for treating the temporal disorder,
we now develop a real-time RG, in analogy to the strong-
disorder RG [34] for spatially disordered systems. We first
combine consecutive time intervals with μ > λ into a sin-
gle interval of length Δtup (and consecutive intervals with
μ < λ into a single interval of length Δtdn). This leaves us
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Fig. 2: (Color online) Numerical solution of the logistic
equation (1) for λ = 1, Δt = 1 using 106 disorder realiza-
tions drawn from W (μ) = pδ(μ − μh) + (1 − p)δ(μ − μl) with
μh = 2, μl = 0.5. The transition is tuned by p, the critical
point is at pc = 1/3. Main panel: probability distribution
Pn(x) at criticality for several times t. The solid lines are the
predictions of the random-walk theory, without adjustable pa-
rameters. Inset: average density 〈ρ〉 vs. time t for several p.
The dashed line is a fit to the prediction 〈ρ〉 ∼ t−1/2.

with a zig-zag curve of alternating upward and downward
segments for x = − lnρ, as illustrated in the numerical
results of fig. 1. In each segment, ρ−1 follows the linear
recurrence ρ−1(t + Δt) = aρ−1(t) + c with the multipliers
of the upward segments fulfilling aup > 1 and those of the
downward segments adn < 1.

The idea of the RG consists in iteratively eliminat-
ing the smallest upward and downward segments, coarse-
graining time. The distributions of aup and adn change
during this process, and their asymptotic behavior gov-
erns the long-time physics. In each RG step, we find the
multiplier a closest to unity. This defines the RG scale
Ω = min(aup

i , 1/adn
i ). We then replace this segment and

its two neighbors by a single segment, as shown in the
inset of fig. 1. The time evolution of the density in this
renormalized segment follows from combining the three
original density recurrences. It takes the same linear form
ρ−1(t + Δt̃) = ãρ−1(t) + c̃ but with renormalized coeffi-
cients ã and c̃. The renormalized multipliers read

ãup = aup
i+1a

up
i /Ω, (6)

1/ãdn = (1/adn
i ) (1/adn

i−1)/Ω, (7)

for the decimation of downward segment adn
i and upward

segment aup
i , respectively. The time intervals combine as

Δt̃up = Δtup
i + Δtdn

i + Δtup
i+1, (8)

Δt̃dn = Δtdn
i−1 + Δtup

i + Δtdn
i . (9)

The expressions from (6) to (9) are exact. Moreover, they
are equivalent to the RG for the spatially disordered quan-
tum Ising chain [32,33] and can be solved in the same way.

Following Fisher [32,33], we define logarithmic vari-
ables Γ = ln Ω, β = ln aup − Γ, and ζ = − lnadn − Γ.
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Upon iterating the RG steps, Γ increases, and the proba-
bility distributions of β and ζ, R(β; Γ) and P(ζ; Γ) change.
They fulfill the integro-differential (flow) equations

∂R
∂Γ

=
∂R
∂β

+ (R0 − P0)R + P0

(
R β⊗ R

)
, (10)

∂P
∂Γ

=
∂P
∂ζ

+ (P0 − R0)P + R0

(
P ζ⊗ P

)
, (11)

where R0 = R(0; Γ) and P0 = P(0; Γ). The symbol P ζ⊗
P =

∫ ζ

0 P(ζ′)P(ζ − ζ′)dζ′ denotes the convolution.
The complete solution of the flow equations for R(β; Γ)

and P(ζ; Γ) is quite elaborate [32,33,35]. However, the
physically relevant solutions can be obtained from the
ansatz

R(β; Γ) = R0e
−R0β , P(ζ; Γ) = P0e

−P0ζ . (12)

Inserting this ansatz into the flow equations (10) and (11)
gives the ordinary differential equations

dR0/dΓ = −R0P0, dP0/dΓ = −R0P0 (13)

which can be solved by elementary means.
This leads to three types of solutions for Γ → ∞. At

criticality, 〈ζ〉 = 〈β〉 (equivalent to v = 〈ln a〉 = 0),
the distributions of the upward and downward multipli-
ers are identical, P(ζ; Γ) = exp(−ζ/Γ)/Γ and R(β; Γ) =
exp(−β/Γ)/Γ. They broaden without limit with the RG
scale Γ, i.e., the effective temporal disorder diverges for
long times, in agreement with the notion of “infinite-
noise” criticality. The typical length of a renormalized
time interval Δt̃ behaves as Γ2. In the inactive phase,
v = 〈β〉 − 〈ζ〉 > 0, the distribution of the upward
steps becomes very broad, R(β; Γ) = R0 exp(−R0β) with
R0 = exp(−Γ/κ)/κ while the distribution of the down-
ward steps does not broaden, P(ζ; Γ) = exp(−ζ/κ)/κ with
a constant κ ∼ 1/v. In the active phase, v < 0, the ex-
pressions for P(ζ; Γ) and R(β; Γ) are exchanged. In both
phases, Δt̃ scales as exp(Γ/κ).

Many important results follow from the RG. To estimate
the lifetime of a finite-size system of N sites, we run the
RG until the typical upward multiplier aup = exp(Γ + β)
reaches N . The lifetime τN is given by the typical time
interval at that RG scale. Using the above solutions, we
obtain τN ∼ N1/κ in the active phase, τN ∼ (ln N)2 at
criticality, and τN ∼ ln N in the inactive phase, as in
the random-walk approach. Analogously, the width of the
density distribution P (x) at criticality is governed by the
upward multipliers aup. As the typical value of ln aup =
Γ + β is 2Γ, we obtain a width of Δx ∼ Γ ∼ t1/2 in
agreement with (3)1.

Contact process. – So far we have analyzed the lo-
gistic equation (1) which contains density fluctuations in

1The full P (x) can be found from the joined distribution of a and
c of the last segment at the end of the decimations.

time but not in space. What changes for finite-dimensional
systems that fluctuate in space and time? To answer this
question, we turn to the contact process [36]. It is defined
on a d-dimensional lattice. Each site can either be infected
or healthy. During the time evolution, each infected site
heals at rate μ while healthy sites becomes infected at
rate λn/(2d), where n is the number of infected nearest-
neighbor sites. (Note that the logistic equation (1) can be
understood as the mean-field limit of the contact process.)
If μ and λ are uniform in space and time independent, the
nonequilibrium transition between the active and inactive
phases is in the ubiquitous DP universality class [8].

Temporal disorder is again introduced by making the
healing and infection rates random functions of time; we
assume piecewise constant rates, μ(t) = μn and λ(t) = λn,
over time intervals Δtn. According to Kinzel’s [22] gen-
eralization of the Harris criterion, such temporal disorder
destabilizes the DP critical behavior in all dimensions be-
cause the clean DP correlation time exponent ν‖ = ν⊥z
violates the inequality ν‖ ≥ 2. Temporal disorder is thus
a relevant perturbation (having positive scale dimension)
at the clean DP critical point.

To resolve the fate of the phase transition in the pres-
ence of temporal disorder, we generalize our real-time RG
method. As in the logistic equation, the time evolution of
the contact process is a sequence of spreading and decay
segments, depending on the values of μn and λn. If the
temporal disorder is strong, the system is far away from
criticality in each individual segment. This allows us to
neglect spatial fluctuations and to formulate the theory
in terms of the density ρ(t) only. We will discuss the va-
lidity of this approximation in the conclusions. During
decay segments, the density decreases exponentially with
time, as in the (mean-field) logistic equation, because each
site can heal independently. In contrast, the character of
the spreading segments changes because in a finite-d sys-
tem with short-range couplings, the infection can at best
spread ballistically, ρ(t) ≈ ρ0(1 + bt)d, rather than ex-
ponentially as in the logistic equation. This difference is
clearly visible in fig. 1. (This also implies that x = − ln ρ
does not undergo a simple random walk, consecutive steps
are rather correlated in a nontrivial manner.)

The RG must thus be modified. If a downward segment
(density increase) is decimated, the multipliers aup still
renormalize multiplicatively according to (6). If an up-
ward segment is decimated, we need to combine the two
neighboring downward (ballistic spreading) segments dur-
ing which the radii of active clusters grow linearly with
time. For strong disorder, 1/adn

i , 1/adn
i−1 � Ω, we can

therefore estimate the renormalized multiplier as 1/ãdn =
(1 + b̃Δ̃tdn)d ≈ (b̃Δ̃tdn)d = (biΔtdn

i + bi−1Δtdn
i−1)

d ≈
[(1/adn

i )1/d + (1/adn
i−1)

1/d]d. We thus arrive at an addi-
tive rather than a multiplicative renormalization,

(1/ãdn)1/d = (1/adn
i )1/d + (1/adn

i−1)
1/d − Ω1/d. (14)

Here, the last term contains the subleading contribution
of the decimated upward segment which we have mainly
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added to ensure the correct behavior in the atypical case
1/adn

i = 1/adn
i−1 = Ω. The RG defined by recursions (6)

and (14) is equivalent to that of spatially disordered quan-
tum systems with super-Ohmic dissipation [37] or with
long-range interactions [38]2.

To analyze the RG, we define reduced variables β =
ln aup − Γ and ζ = d[(Ωadn)−1/d − 1]. In terms of these
variables, the flow equation for the distribution R(β; Γ) is
still given by (10) while P(ζ; Γ) fulfills

∂P
∂Γ

=
(

1 +
ζ

d

)
∂P
∂ζ

+
(

P0 − R0 +
1
d

)
P + R0

(
P ζ⊗ P

)
.

(15)
In the mean-field limit d → ∞, we recover the flow
equation (11), as expected. Inserting the exponential
ansatz (12) into the flow equations (10) and (15) yields

dR0/dΓ = −R0P0, dP0/dΓ = (1/d − R0)P0. (16)

These equations take the famous Kosterlitz-Thouless
form [39] for all finite d. Details of their solution will be
published elsewhere. Here, we just summarize the results.
The critical fixed point is located at P∗

0 = 0, R∗
0 = 1/d.

This implies that the distribution of the downward mul-
tipliers 1/adn becomes infinitely broad while the distri-
bution upward multipliers aup retains a finite width for
Γ → ∞. The typical length of a renormalized time interval
behaves as Δt̃ ∼ ΩR∗

0 = Ω1/d.
Many important results follow. The width of the (loga-

rithmic) density distribution P (x) at criticality is governed
by the typical value of ln aup. This gives Δx ∼ ln aup ≈
Γ = ln Ω ∼ ln t. Thus, P (x) still broadens without limit
with increasing time, but its width increases only loga-
rithmically, in contrast to the power-law increase in the
case of the logistic evolution equation. The average den-
sity thus decays as 〈ρ(t)〉 ∼ (ln t)−δ̄ with δ̄ = 1 (while the
usual decay exponent δ formally vanishes). The correla-
tion time can be obtained from analyzing the off-critical
solutions of (16). As usual for Kosterlitz-Thouless flows,
it depends exponentially on the distance from criticality
r via ln ξt ∼ |r|−ν̄‖ with ν̄‖ = 1/2 (the usual correla-
tion time exponent ν‖ is infinite, fulfilling Kinzel’s bound
ν‖ ≥ 2). Correlation length and time are proportional to
each other, implying a dynamical exponent z = 1. Finally,
the stationary density in the active phase varies as |r|β
with β = 1/2. The critical exponents

δ̄ = 1, β = 1/2, ν̄‖ = 1/2 (17)

fulfill the scaling relation δ̄ = β/ν̄‖. In the active phase,
the lifetime τN of a finite-size sample shows a Griffiths
singularity, i.e., it increases as a nonuniversal power law
τN ∼ N1/κ. However, in contrast to the logistic evolu-
tion equation, the Griffiths exponent κ does not diverge
at criticality but saturates at κc = d.

2If the density increase in the spreading segments were slower
than ballistic but still followed a power in t, the recursion for 1/ãdn

would take the additive form (14) with 1/d replaced by a different
exponent. The resulting critical behavior would not change [37].
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Fig. 3: (Color online) Monte Carlo simulations of the 2d
contact process, starting from ρ = 1 (up to 32002 sites,
μ = 1, Δt = 2, W (λ) = 0.8 δ(λ − λh) + 0.2 δ(λ − λh/10), 20000
disorder realizations). Main panel: P (x) at criticality for dif-
ferent times t, scaled such that the curves coincide. Inset (a):
scale factor ft vs. ln t, confirming the logarithmic broaden-
ing of P (x) with time. Inset (b): 〈ρ(t)〉 for varying infection
rate λ. The critical curve, λh = 3.65, follows the predicted
〈ρ〉 ∼ (ln t)−1 over almost three orders of magnitude in t.

To test these predictions, we have performed Monte
Carlo simulations of the 2d contact process with temporal
disorder by methods analogous to ref. [12]. The time evo-
lutions of P (x) and 〈ρ(t)〉 are shown in fig. 3. All data are
in excellent agreement with the RG predictions. We have
also verified τN ∼ N1/2 at criticality.

Conclusions. – In conclusion, random environmental
noise (i.e., temporal disorder) leads to exotic “infinite-
noise” critical points at which the density distributions
become infinitely broad (even on a logarithmic scale) both
for the (mean-field) logistic evolution model and for the
finite-d contact process. The infinite-noise critical behav-
ior of the logistic equation is asymptotically exact because,
at criticality, the typical density vanishes with increas-
ing time, justifying the reflected-random-walk approach.
Moreover, the real-time RG suggests that this critical be-
havior holds for an entire class of single-variable growth
models with temporal disorder in the linear growth rate
and some nonlinearity preventing population explosion.
Such models occur in population dynamics, chemical ki-
netics, economics, and other fields.

The generalization of the RG to finite dimensions in-
cludes spatial fluctuations only approximately (via the
modification of the density increase in spreading seg-
ments). The approximation is expected to be good if the
temporal disorder is so strong that individual spreading
and decay segments are far from criticality. As the den-
sity distribution broadens without limit at criticality, this
condition appears to be fulfilled self-consistently. More-
over, according to Kinzel’s [22] generalization of the Har-
ris criterion, even weakly disordered systems should flow
to this regime. These heuristic arguments suggest that
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our theory is asymptotically stable for all bare disorder
strengths. However, two other scenarios cannot be ex-
cluded: i) our theory might be asymptotically stable only
for sufficiently strong bare disorder, or ii) our theory might
hold in a transient time-regime (whose width diverges with
disorder strength) before spatial fluctuations become im-
portant. Discriminating between these scenarios requires
more sophisticated methods.

Our theory for the contact process predicts universal
critical behavior while Jensen [23,24] reported nonuniver-
sal exponents in 1d. (Jensen’s values do not always re-
spect the bound ν‖ ≥ 2, though.) This could mean that
our theory does not apply to 1d, or Jensen’s data could
be preasymptotic, caused by long transients before the
infinite-noise behavior is reached. We have performed
Monte Carlo simulations of the 1d contact process with
strong temporal disorder; preliminary results do show sig-
natures of the strong-noise physics reported here.

In recent years, absorbing state phase transitions have
been observed in turbulent liquid crystals [40], driven sus-
pensions [41,42], superconducting vortex dynamics [43],
as well as in bacteria colony biofilms [44,45]. Studying ex-
ternal noise at these transitions can provide experimental
tests of our theory. Moreover, the effects of noise on the
extinction of a biological population or an entire species
due to environmental changes are attracting considerable
attention (see, e.g., ref. [28]). Experimentally, these ques-
tions could be studied, e.g., by growing bacteria or yeast
populations in fluctuating external conditions.

∗ ∗ ∗
This work was supported by the NSF under Grant

No. DMR-1205803, by Simons Foundation, by FAPESP
under Grant No. 2013/09850-7, and by CNPq under Grant
Nos. 590093/2011-8 and 305261/2012-6. We acknowledge
helpful discussions with R. Dickman.

REFERENCES

[1] Schmittmann B. and Zia R. K. P., Statistical mechan-
ics of driven diffusive systems, in Phase Transitions and
Critical Phenomena, edited by Domb C. and Lebowitz

J. L., Vol. 17 (Academic Press, New York) 1995, p. 1.
[2] Marro J. and Dickman R., Nonequilibrium Phase Tran-

sitions in Lattice Models (Cambridge University Press,
Cambridge) 1999.

[3] Hinrichsen H., Adv. Phys., 49 (2000) 815.
[4] Odor G., Rev. Mod. Phys., 76 (2004) 663.
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[9] Hooyberghs J., Iglói F. and Vanderzande C., Phys.
Rev. Lett., 90 (2003) 100601.
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M. A., Phys. Rev. Lett., 106 (2011) 235702.
[26] Leigh E. G. jr., J. Theor. Biol., 90 (1981) 213.
[27] Kamenev A., Meerson B. and Shklovskii B., Phys.

Rev. Lett., 101 (2008) 268103.
[28] Ovaskainen O. and Meerson B., Trends Ecol. Evol., 25

(2010) 643.
[29] Verhulst P., Corresp. Math. Phys., 10 (1838) 113.
[30] Steinfeld J. I., Francisco J. S. and Hase

W. L., Chemical Kinetics and Dynamics (Prentice Hall,
Englewood Cliffs) 1999.

[31] Bod R., Hay J. and Jannedy S. (Editors), Probabilistic
Linguistics (MIT Press, Cambridge) 2003.

[32] Fisher D. S., Phys. Rev. Lett., 69 (1992) 534.
[33] Fisher D. S., Phys. Rev. B, 51 (1995) 6411.
[34] Igloi F. and Monthus C., Phys. Rep., 412 (2005) 277.
[35] Fisher D. S., Phys. Rev. B, 50 (1994) 3799.
[36] Harris T. E., Ann. Probab., 2 (1974) 969.
[37] Vojta T., Hoyos J. A., Mohan P. and Narayanan

R., J. Phys.: Condens. Matter, 23 (2011) 094206.
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