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Local defect in a magnet with long-range interactions

José A. Hoyos* and Thomas Vojta†

Department of Physics, University of Missouri-Rolla, Rolla, Missouri 65409, USA
�Received 9 November 2006; revised manuscript received 10 January 2007; published 23 March 2007�

We investigate a single defect coupling to the square of the order parameter in a nearly critical magnet with
long-range spatial interactions of the form r−�d+��, focusing on magnetic droplets nucleated at the defect while
the bulk system is in the paramagnetic phase. To determine the static droplet profile, we solve a Landau-
Ginzburg-Wilson action in the saddle-point approximation. Because of the long-range interaction, the droplet
develops a power-law tail which is energetically unfavorable. However, as long as ��0, the tail contribution
to the droplet free energy is subleading in the limit of large droplets; and the free energy becomes identical to
the case of short-range interactions. We also consider the effects of fluctuations and find that they do not
change the functional form of the droplet as long as the bulk system is noncritical. Finally, we study the droplet
quantum dynamics with and without dissipation; and we discuss the consequences of our results for defects in
itinerant quantum ferromagnets.

DOI: 10.1103/PhysRevB.75.104418 PACS number�s�: 75.10.Jm, 75.10.Nr, 75.40.�s

I. INTRODUCTION

In a nearly critical system, a local defect that prefers the
ordered phase can induce the nucleation of a droplet of local
order in the nonordered background. Such droplets arise,
e.g., in disordered systems due to the presence of rare
strongly coupled spatial regions. They can have surprisingly
strong consequences for the properties of the phase transi-
tion. In a classical magnet at nonzero temperature, a large
finite-size droplet does not have a static magnetization; in-
stead it fluctuates very slowly because flipping the droplet
requires coherently changing the order parameter in a large
volume. More than 30 years ago, Griffiths1 showed that rare
regions and the magnetic droplets formed on them, lead to a
singularity in the free energy in a whole temperature region
above the critical point, which is now known as the Griffiths
region or the Griffiths phase.2 Later, it was shown that this
singularity is only an essential one3–5 and thus probably un-
observable in experiment �see also Ref. 6�.

The effects of magnetic droplets are greatly enhanced if
the underlying defects are extended macroscopic objects �lin-
ear or planar defects�. In these cases, the droplet dynamics is
even slower and so increases their effects. This was first
found in the McCoy-Wu model,7,8 a two-dimensional �2D�
Ising model with linear defects. Later it was studied in great
detail in the context of the quantum phase transition of the
random transverse-field Ising model where the defects are
extended in the imaginary time dimension.9,10 In these sys-
tems, the Griffiths singularity in the free energy actually
takes a power-law form, and the susceptibility diverges in-
side the Griffiths region.

Recently, it has been shown that even stronger effects
than these power-law Griffiths singularities can occur in
Ising magnets with planar defects.11,12 Droplets that are ex-
tended in two dimensions can undergo the magnetic phase
transition �and develop a static order parameter� indepen-
dently from the bulk system. This leads to a destruction of
the global sharp phase transition by smearing. �Note that an
unusual magnetization-temperature relation was already
found in the numerical mean-field analysis,13 but it was in-

terpreted as power-law critical behavior with a very large
exponent �.� Similar smeared phase transitions have also
been found in a nonequilibrium system in the presence of
linear defects.14 A recent review of these and other rare re-
gion effects can be found in Ref. 15.

One particularly interesting class of problems concerns
droplets in metallic quantum magnets. In these systems, the
dynamics of the magnetic modes is overdamped because
they couple to gapless fermionic excitations. In metallic
�Ising� antiferromagnets, this dissipative environment
strongly suppresses tunneling, and sufficiently large droplets
completely freeze at low temperatures.16–18 The global quan-
tum phase transition is thus smeared.19

In metallic ferromagnets, the situation is further compli-
cated because the coupling between the magnetic modes and
the gapless fermionic degrees of freedom generates an effec-
tive long-range spatial interaction between the magnetic
fluctuations.20–22 This interaction which takes the form
r−�2d−1� for clean electrons and r−�2d−2� for diffusive electrons,
where d�2 is the spatial dimensionality, can be viewed as a
result of generic scale invariance �for a recent review see
Ref. 23�. Understanding defects in nearly critical metallic
quantum ferromagnets thus leads to the question of whether
the existence and the properties of magnetic droplets are in-
fluenced by the long-range spatial interaction.

In this paper, we therefore develop the theory of a single
defect coupling to the square of the order parameter in a
nearly critical classical or quantum magnet with power law
spatial interactions of the form r−�d+�� with ��0 to ensure a
proper thermodynamic limit. A crucial effect of the long-
range interactions is that the tail of the magnetic droplet de-
cays into the bulk region like a power law of the distance as
mandated by Griffiths theorem.24 Such a strong tail extend-
ing into the region that prefers the disordered phase can be
expected to be energetically unfavorable. To find out to what
extent this hinders the formation of the magnetic droplet, we
study the droplet free energy within the saddle-point ap-
proach. In the quantum case, we also consider the tunneling
dynamics of the droplet for three cases: undamped dynamics,
overdamped dynamics due to Ohmic dissipation, and a con-
served overdamped dynamics as in the itinerant ferromagnet.
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Our paper is organized as follows: We introduce our
model, a classical or quantum �4 theory with long-range
spatial interactions, in Sec. II. In Sec. III, we analyze the free
energy of a droplet within the saddle-point approximation,
and we discuss fluctuations. The droplet dynamics in the
quantum case is considered in Sec. IV. The concluding Sec.
V is devoted to a summary as well as a discussion of the
order parameter symmetry and the consequences of our re-
sults for quantum Griffiths effects.

II. THE MODEL

In this section we introduce our model, a d-dimensional
Landau-Ginzburg-Wilson field theory with long-range
power-law interactions for a scalar order parameter field �.
We first formulate the model for the case of a zero-
temperature quantum phase transition, and we later discuss
the necessary changes for a classical thermal phase transi-
tion. The action of our quantum �4 theory reads

S = Sstat + Sdyn, �1�

with the static part given by

Sstat =� d�� dxdy��x,��	�x,y���y,�� +
u

2
� d�dx�4�x,�� .

�2�

Here, x and y are position vectors and � is imaginary time.
The bare two-point vertex, 	�x ,y�=	NI�x�
�x-y�+	I�x ,y�,
contains a noninteracting part and the attractive long-range
interaction. The latter is given by

	I�x,y� = − ���0
2 + �x − y�2�−��d+��/2�. �3�

Here, � is the interaction strength, �0 is a microscopic cutoff
length scale of the order of the lattice constant, and � con-
trols the range of the interaction. To ensure a proper thermo-
dynamic limit �an extensive free energy�, � must be positive.
Note that an additional short-range interaction of the usual
form ����2 can be added, if desired. As will be shown in Sec.
III A, its contribution is subleading. The noninteracting part
of the vertex reads

	NI�x� = t0 + 
t�x� + 	0, �4�

where t0 is the bulk distance from criticality,42 and the con-
stant 	0 is chosen such that it cancels the �q=0� Fourier
component of the interaction �thus ensuring that the bulk
critical point is indeed at t0=0�. It takes the value 	0
=
d��0

−�B�� /2 ,d /2� /2. Here 
d is the surface of a
d-dimensional unit sphere, and B�x ,y� is Euler’s beta func-
tion. 
t�x� is the defect potential. For definiteness we con-
sider a single spherically symmetric defect at the origin,


t�x� = �− V ��x� � a� ,

0 ��x� � a� .
� �5�

We are interested in the case V�0, i.e., in defects that favor
the ordered phase.

When discussing the quantum tunneling dynamics of the
magnetic droplets in Sec. IV, we will compare three different

dynamical actions. �i� In the undamped case, the dynamical
action is given by

Sdyn
�1� = T	

�n

� dq
�n

2

c2 ��̃�q,�n��2, �6�

where �̃�q ,�n� is the Fourier transform of the order param-
eter field in terms of wave number q and Matsubara fre-
quency �n, T is the temperature, and c plays the role of a
velocity of the undamped modes.

�ii� If the magnetic modes are coupled to an ohmic bath,
the leading term in the dynamic action takes the form

Sdyn
�2� = �̃T	

�n

� dq��n���̃�q,�n��2, �7�

where �̃ measures the strength of the dissipation, and there is
a microscopic frequency cutoff ��n���mic.

�iii� Finally, we also consider the case of overdamped dy-
namics with order parameter conservation analogous to the
itinerant ferromagnet. The leading term in the dynamic ac-
tion is given by

Sdyn
�3� = �̃cT	

�n

� dq
��n�

q
��̃�q,�n��2. �8�

The action defined in Eqs. �1�–�8� describes a system
close to a quantum phase transition. In order to investigate a
droplet in a system close to a classical thermal phase transi-
tion, we simply drop the dynamical piece of the action and
eliminate the imaginary time dependence of the order param-
eter field.

III. EXISTENCE OF MAGNETIC DROPLETS

In this section we investigate to what extent the existence
of droplets is influenced by the long-range spatial interaction.
The basic idea is as follows: If the local potential t0−V on
the defect is negative, magnetic order is preferred on the
defect even though the bulk system may be nonmagnetic,
t0�0. Figure 1 shows a schematic of the local order param-

FIG. 1. �Color online� Schematic local order parameter profiles
for defect induced droplets for short-range �a� and long-range �b�
interactions. The dashed line depicts the defect potential.
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eter profile in this situation, comparing short-range and long-
range interactions. In the short-range case, the tail of the
droplet profile falls off exponentially outside the
defect.17,18,25 Thus the tail provides only a subleading surface
term to the droplet free energy. In contrast, for the long-range
interaction �3�, the tail must take a power-law form because
Griffiths theorem24 dictates that the magnetic correlations
cannot decay faster than the interaction. The tail thus extends
far into the bulk region where the local potential is positive,
and therefore leads to a large positive contribution to the
droplet free energy. In this section we study whether this
mechanism hinders the formation of magnetic droplets for
long-range interactions.

A. Saddle-point equation

We start by analyzing the action �1� within the saddle-
point approximation, focusing on the case t0�0 �noncritical
bulk system� because it is relevant for Griffiths phenomena.
We can restrict ourselves to time-independent solutions be-
cause they have the lowest saddle-point actions �any time
dependence produces an extra, strictly positive contribution
from Sdyn�. Setting ��x ,��=��x� and minimizing the total
action with respect to this field leads to the saddle-point
equation

�t0 + 
t�x� + 	0���x� + u�3�x� =� ���y�dy

��0
2 + �x − y�2��d+��/2 .

�9�

Note that the classical action discussed at the end of Sec. II
leads to the same saddle-point equation. Therefore, the re-
mainder of this section applies to both the classical and
quantum cases.

We have not managed to solve the nonlinear integral
equation �9� in closed form. We therefore first present ana-
lytical results for the behavior of ��x� far away from the
defect, and then we complement them by a numerical solu-
tion. For sufficiently large V �such that t0−V is sufficiently
negative�, we expect the order parameter in the droplet core,
�x��a, to be roughly constant. Griffiths’ theorem24 mandates
that the droplet tail cannot decay faster than �x�−�d+��; we
therefore try the spherically symmetric ansatz

��x� = ��0 ��x� � a� ,

C/�x�d+� ��x� � a� ,
� �10�

with parameters �0 and C. Note that in general, the ansatz
�10� is not continuous at �x�=a. To cure this unphysical be-
havior, there must be an intermediate region a� �x��a+�m
which connects the core with the asymptotic region in �10�.
We will come back to this point later in this section.

We now insert the ansatz �10� into the saddle-point equa-
tion �9� and analyze it in the limit of large defects, a��0,
and large distance, �x��a where �9� can be linearized in �.
We find that the ansatz indeed solves the linearized saddle-
point equation with the amplitude C given by �to leading
order in a�

C =

d�0�

dt0
ad. �11�

Note that C diverges when the bulk system approaches criti-
cality �t0→0� indicating that the ansatz �10� is not valid for
a defect in a critical bulk. We will come back to this point in
the next section.

To determine �0, we now calculate the saddle-point action
by inserting the solution �10� with �11� into the action �1�.
The result is the sum of a droplet core term, a tail term, and
a core-tail interaction term. The core term takes the form
�
d /d�ad�0

2�t0−V+u�0
2 /2�. The contribution of the long-

range interaction is exactly cancelled by the 	0 term, as must
be the case for a constant order parameter. Interestingly, the
tail term and the core-tail interaction term are subleading in
the limit of large defects, a��0. Their leading a dependen-
cies are ad−2� and ad−�−1 �up to possible logarithmic correc-
tions�, respectively. Finally, we must consider the intermedi-
ate region a� �x��a+�m in which the droplet core smoothly
connects to the asymptotic tail. From the numerical solution
of the saddle-point equation �discussed in the next section�
we found that the width of the intermediate region is of the
order of the microscopic scale, �m
�0 �at least as long as the
bulk system is not too close to criticality; see the next section
for details�. Importantly, �m does not depend on the defect
size a. Therefore, the intermediate region can at most make a
surface-type contribution to the droplet free energy, i.e., it
can at most scale like ad−1.

Collecting all the terms, we find that the saddle-point ac-
tion takes the form

SSP =

d

d
�0

2ad�t0 − V +
u

2
�0

2� + O�ad−1,ad−2�� �12�

in the limit of a large defect �a→��. Minimizing SSP with
respect to �0 gives the optimal value

�0 =
V − t0

u
. �13�

This means, in the limit of a large defect, a droplet of local
order starts to form as soon as the local potential t0−V on the
defect becomes negative. For finite a, the subleading terms in
�12� lead to a shift in the onset of local order that can be
described by finite-size scaling in the usual way.

The results �12� and �13� are identical to the case of short-
range interactions.17,18,25 We thus arrive at the somewhat sur-
prising conclusion that even though the long-range interac-
tions do induce a power-law tail of the droplet, they do not
change the leading behavior of its free energy �in the limit of
large defects�, and thus do not hinder the existence of large
droplets.

We also note that an additional short-range interaction of
the form ����2 in the static action �2� will not modify our
results. Clearly, in the core region of the droplet it plays no
role, and faraway from the core �x�a�, it only produces a
subleading power law. Its contribution in the intermediate
region can at most be of order ad−1.
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B. Fluctuations

So far, we have analyzed the magnetic droplets within
saddle-point approximation. In this section, we discuss to
what extent fluctuations modify the above saddle-point
analysis. It is useful to divide the fluctuations into two
classes, small fluctuations about the saddle-point solution
and collective reorientations of the entire droplet in �imagi-
nary� time. These two classes are well separated if the local
order on the defect is properly developed, i.e., V− t0�u. The
collective reorientations determine the long-time quantum
dynamics of the droplet. They will be considered in more
detail in Sec. IV.

In contrast, small long-wavelength fluctuations could po-
tentially modify the droplet profile �10�, in particular the
form of the magnetization tail. To study the relevance of
these fluctuations, we expand the action �1� about the saddle-
point solution and perform a tree-level �power-counting�
renormalization group analysis. The results depend qualita-
tively on whether or not the bulk system is critical.

As long as the bulk system is in its disordered phase, t0
�0, the asymptotic long-distance decay of the droplet mag-
netization is controlled by the stable large-t0 fixed point of
the bulk rather than its critical fixed point. Since this stable
fixed point does not have anomalous dimensions, the saddle-
point analysis is qualitatively correct and the decay exponent
in �10� remains unchanged. Thus, the fluctuations only renor-
malize nonuniversal prefactors. Analogous results were
found in Ref. 17 for the case of short-range case interaction.
Note that critical fluctuations on the defect can change the
exponent in the relation �13� close to the onset of local order
at t0−V=0, provided the system is below its upper critical
dimension. However, this has no bearing on the form of the
tail.

In contrast, if the bulk system is right at the transition,
t0=0, the long-distance magnetization decay is controlled by
the exponent � of the critical fixed point via ��x�

�x�−d+2−� �because far from the defect, ��x� falls off as the
bulk correlation function�. For a classical magnet with long-
range interactions this fixed point was studied in the seminal
work of Fisher, Ma, and Nickel.26 They found that the criti-
cal behavior is mean-field-like for ��d /2 with �=2−�. For
��2−�SR �where �SR is the exponent of the corresponding
short-range model�, the critical behavior is identical to that
of the short-range model.27–29 In between, the exponents are
nonclassical and interpolate between mean-field and short-
range behavior. Let us also point out that interesting cross-
over phenomena occur when the bulk system is close but not
exactly at the critical point. In this case the critical fixed
point controls the magnetization decay at intermediate dis-
tances �of the order of the bulk correlation length� from the
defect while the asymptotic behavior is again given by the
saddle-point result �10�.

C. Numerical solutions of the saddle-point equation

In this section, we confirm and complement the
asymptotic analysis of the saddle-point equation �9� by a
numerically exact solution.

We study both one and three space dimensions. In the
three-dimensional case, for a spherical defect and droplet, the

angular integration on the right-hand side �rhs� of the saddle-
point equation �9� can be carried out analytically leading to a
one-dimensional integral equation in radial direction. We
now discretize space in units of the microscopic length �0
and fix the energy scale by setting u=1. The resulting set of
nonlinear equations is solved by the following procedure: We
start from an ansatz for � �e.g., the ansatz given in �10�� and
numerically perform the integral in the long-range term of
�9�. We then determine an improved value for � by solving
the remaining cubic equation at each point by standard meth-
ods. These steps are repeated iteratively until the solution
converges.

In this way, we have analyzed one-dimensional systems
with 2�104 to 2�105 points and three-dimensional systems
with 104 to 105 points in the radial direction. We have stud-
ied the cases �=1,2 ,3, large defects a�1 and various val-
ues of t0, V, and �. For weak long-range interactions and
away from bulk criticality, our procedure converges rapidly.
With increasing � and decreasing t0, the convergence be-
comes slower. However, in all cases, our self-consistency
cycle eventually converges, giving us a numerically exact
solution of the saddle-point equation.

We now present and discuss a few characteristic results
from these calculations. In Fig. 2, we show saddle-point so-
lutions for d=3, �=1 and different values of the distance t0
from bulk criticality. In agreement with the analytical predic-
tions of the preceding section, the order parameter is essen-
tially constant on the defect. For large �x�, the droplet tail
falls off with the predicted power-law �
�x�−�d+��= �x�−4 for
all values of t0. The amplitude C of this power-law decay is
analyzed in Fig. 3. As predicted in the preceding section, for
small t0, C behaves like 1/ t0 �the small deviations are the
lowest t0 stem from the fact that in these cases, 105 sites is
not sufficient to reach the asymptotic regime�.

Figure 4 shows the dependence of the droplet profile on
the size a of the defect for a system with d=�=1. For all a,
the asymptotic decay of the droplet tail takes the predicted
power-law form, �
�x�−�d+��= �x�−2. This figure also shows
that the width �m of the intermediate x region which connects
the droplet core with the power-law tail does not change with
a as discussed in the preceding section. �This becomes even
more obvious when a linear rather than the logarithmic x

FIG. 2. �Color online� Local order parameter � of a three-
dimensional droplet as a function of distance x from the defect
center for different distances t0=0.1 to 51.2 from bulk criticality
�from top to bottom�.
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scale is used.� Moreover, in agreement with �13�, �0 does not
depend on a. The amplitude C of this power-law decay is
analyzed in Fig. 5. In agreement with the theoretical predic-
tion �11�, the amplitude grows linearly with the defect size a.

We have performed analogous calculations for other pa-
rameter sets, including varying t0 for a=300,600,1600 as
well as varying a for V=30. In all cases, we have found
excellent agreement with the predictions of the asymptotic
analysis of Sec. III C.

IV. TUNNELING DYNAMICS

In this section, we study the tunneling dynamics of a
single droplet at a zero-temperature quantum phase transi-
tion. Our approach starts from the pioneering work of Callan
and Coleman30 and Leggett and co-workers31,32 �in the case
of dissipative dynamics�. In the following sections, we sepa-
rately discuss the droplet dynamics for the three dynamical
actions given in Eqs. �6�–�8�, starting with the undamped
case.

A. Undamped magnet

Following Callan and Coleman,30 the tunneling rate be-
tween the up and down states of the droplet �i.e., the tunnel
splitting of the ground state� can be estimated from the ac-

tion of instantonlike saddle-point solutions ��x ,�� fulfilling
the boundary conditions ��x ,��→ ±��x� for �→ ±�. In
principle, several processes contribute to the overall tunnel-
ing rate. In the simplest one, the droplet retains its shape
while collapsing and reforming.33,34 A competing process
consists of the nucleation of a domain wall that then sweeps
the droplet.35

We start by considering the collapse-and-reformation pro-
cess which can be described by an ansatz

��x,�� = ��x����� �14�

with ��x� being the static saddle-point solution of Sec. III
and ����→ ±1 for �→ ±�. Inserting this ansatz into the ac-
tion �1� and integrating over the spatial variables yields the
following excess effective action �above the time-
independent solution ��1�:

�S�1� =

d

d
�0

2ad� d���0
2u

2
�1 − �2�2 +

1

c2�d�

d�
�2� �15�

to leading order in the defect size a. The saddle-point instan-
ton solution of this action can be found exactly. It takes the
form ����=tanh�� /�0�, with �0

−2=c2�0
2u /2. The resulting in-

stanton action reads

�Sinst
�1� =

4
d

3d
u�0

4ad�0 �16�

giving a tunnel splitting

��1� � �0e−�Sinst
�1�

. �17�

The “attempt frequency” �0 can be determined by standard
quantum tunneling considerations32 from the fluctuations
about the instanton solution. Importantly, the tunneling rate
decays exponentially with the volume of the droplet. Equa-
tions �15�–�17� are in complete agreement with the corre-
sponding results for the case of short-range
interactions,17,18,36 reflecting the fact that the leading terms of
the instanton action stem from the droplet core rather than
the tail.

To discuss the contribution of the moving domain wall
processes to the tunneling rate, we use the ansatz

FIG. 3. �Color online� Amplitude C of the asymptotic power-
law decay of the droplet tail for the system shown in Fig. 2. The
solid line is the theoretical prediction, Eqs. �11� and �13�.

FIG. 4. �Color online� Local order parameter � of a one-
dimensional droplet as a function of distance x from the defect
center for different defect sizes a=50 to 1600 �from left to right�.

FIG. 5. �Color online� Amplitude C of the asymptotic power-
law decay of the droplet tail for the system shown in Fig. 4. The
solid line is the theoretical prediction, Eqs. �11� and �13�.
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��x,�� = ��x���� − x/v� �18�

which describes a domain wall that sweeps the droplet in the
x direction with velocity v. � describes the domain wall
shape and fulfills the boundary conditions ��z�→ ±1 for z
→ ±� as before. Inserting this into the action �1� gives the
same effective action �15� plus one additional positive term
from the spatial dependence of � �this term corresponds to
the domain wall energy�. Therefore, the minimal action for
this process is bounded by �16�, and to exponential accuracy
the corresponding tunneling rate cannot be larger than �17�.
This is in qualitative agreement with earlier results for short-
range interactions. Stauffer35 estimated the tunneling rate of
a domain wall within quasiclassical WKB approximation and
found that it depends exponentially on the droplet volume.
Senthil and Sachdev37 estimated the tunnel splitting of a lo-
cally ordered island in a transverse-field Ising model using
perturbation arguments. Again, the result �which should con-
tain all possible processes� is exponentially small in the
droplet volume.

B. Overdamped dynamics

We now consider overdamped dynamics with the action
Sdyn

�2� as given in �7�. Inserting the ansatz ��x ,��=��x�����
into Sdyn

�2� and integrating over the spatial variables gives the
following contribution to the effective action:

�S�2� =

d

d
ad�0

2� d�d��
�̃

2�

����� − ������2

�� − ���2 �19�

to leading order in the defect size a. The other terms are as in
Eq. �15�. A straightforward saddle-point instanton analysis of
the effective action analogous to the preceding section fails
because the interaction of the trajectory ���� at large positive
times with the trajectory at large negative times causes a
logarithmic divergence. Following Refs. 32 and 38, the cal-
culation therefore proceeds in two stages.

In the first stage, we introduce a low-frequency cutoff �c
in the dynamic action �7�. This changes the interaction kernel
in �19�,

1

�� − ���2 →
1 + 2�c�� − ���

�� − ���2�1 + �c�� − ����2 , �20�

and removes the divergence. We have not been able to solve
analytically for the instanton, but we have used the ansatz
����=tanh�� /�0� with variational parameter �0. Minimizing
the effective action �S�1�+�S�2� with respect to �0 gives

�0 =
3�̃

��0
2u
�1 +
1 +

2�2�0
2u

9c2�̃2 � . �21�

In the limit of weak dissipation, �̃→0, we recover the result
for undamped dynamics while strong dissipation, �̃→�,
leads to �0=6�̃ / ���0

2u�. The resulting instanton action can
be expressed in terms of the dimensionless dissipation
strength parameter32,38

� =
4
d

�d
�0

2ad�̃ . �22�

We note that � is proportional to the defect volume ad.
�Analogous results have been obtained for dissipative ran-
dom quantum Ising models.39,40� The dissipative part of the
instanton action reads

�Sinst
�2� = − � ln��c� + f��� , �23�

where the function f��� is given by f���=c�+O��2� for
weak dissipation and f���=−� ln �+c��+O�ln���� for
strong dissipation. c and c� are constants of order one. For
comparison we have also studied a piecewise linear ansatz
for ����. The resulting instanton action is identical to �23�
except for different numerical values of the constants c ,c�.
At the end of the first stage of the calculation, we thus obtain
the bare tunnel splitting

�bare
�2� � �0e−�Sinst

�2�
. �24�

In the second stage of the calculation the resulting dissi-
pative two-level system is treated using renormalization
group methods.32 It is well-known that instanton-instanton
interactions renormalize the tunnel splitting, yielding

��2� 
 �bare
�2� ��bare

�2�

�c
��/�1−��

. �25�

This also eliminates the unphysical dependence of the tunnel
splitting on the arbitrary cutoff parameter �c. We thus find
that the smaller defects with ��1 continue to tunnel, albeit
with a strongly reduced rate. The larger defects with ��1
cease to tunnel, i.e., they are on the localized side of the
Kosterlitz-Thouless phase transition of the dissipative two-
level system. These results are in qualitative agreement with
the case of short-range interactions.17,18

C. Conserved overdamped dynamics

Finally, we consider the case of overdamped dynamics
with a conserved order parameter as given by the dynamic
action �8�. Such an action arises, e.g., in the case of an itin-
erant quantum ferromagnet.

Order parameter conservation requires some care in dis-
cussing the dynamics of our locally ordered droplet. In par-
ticular, the homogeneous magnetization �dx��x ,�� must not
be time dependent. Therefore, the product form ��x ,��
=��x����� with ��x� the static solution of Sec. III is not a
suitable ansatz in this case. This can be fixed �in a crude
way� by subtracting a constant from the droplet profile,
���x�=��x�−const such that the q=0 Fourier component is
cancelled. The ansatz ��x ,��=���x����� then provides a
variational upper bound for the instanton action.

Inserting this ansatz into �8� and carrying out the integral
over the spatial variables leads to a dissipative term in the
effective ���� action with the same functional form as �19�.
The prefactor and the resulting dimensionless dissipation
strength �, however, are different. To leading order in the
defect size a, we find
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� = � 8�0
2a4�̃c/� �d = 3� ,

32�0
2a3�̃c/�3�� �d = 2� .

� �26�

In general dimension d�2, the dimensionless dissipation
strength is now proportional to ad+1 instead of ad. The extra
factor a compared to the nonconserved case in Sec. IV B can
be understood as follows. To invert the magnetization of a
droplet of linear size a, magnetization must be transported
over a distance that is at least of order a �because the order
parameter conservation prevents simply flipping the sign of
the magnetization on the defect�. This involves modes with
wave vectors of the order of q
1/a. Since the dissipation
strength in �8� is inversely proportional to q, we expect an
additional factor a in the effective action. This argument
strongly suggests that this extra factor is not an artefact of
our simple ansatz for ��x ,�� but correctly reflects the phys-
ics of the conserved order parameter case.

In all other respects, the calculation proceeds as in the
nonconserved case in Sec. IV B. The resulting dynamic be-
havior of the droplets depends on the value of the dimension-
less dissipation strength parameter �. Small droplets ��
�1� still tunnel while the larger ones ���1� freeze. Because
� is now proportional to ad+1 the tunneling of large droplets
is even more strongly suppressed than in the nonconserved
case.

V. DISCUSSION AND CONCLUSIONS

To summarize, we have studied the physics of a single
defect coupling to the square of the order parameter in a
nearly critical system with long-range spatial interactions of
the form r−�d+�� with ��0. Such a defect can induce the
nucleation of a magnetic droplet while the bulk system is
still in the nonmagnetic phase. Due to the long-range inter-
actions, the droplet magnetization develops a long power-law
tail, i.e., at large distances r from the defect, it decays like
r−�d+�� in agreement with Griffiths’ theorem.24 Nonetheless,
the droplet free energy is dominated by the core �on-defect�
contribution while the tail contribution is subleading in the
limit of large defects. Therefore, droplets will nucleate on
large defects as soon as the local potential �the local distance
from criticality� becomes negative, in complete agreement
with the case of short-range interactions. Our explicit calcu-
lations of the droplet magnetization profile have been per-
formed within the saddle-point approximation, but as long as
the bulk system is noncritical, fluctuations do not change the
functional form of the droplet. They only renormalize non-
universal parameters.

In addition to the existence of the magnetic droplets, we
have also investigated their dynamics. As is well known,15 in
the case of a classical �thermal� phase transition, the droplet
cannot order statically. Instead, it fluctuates between up and
down due to thermal fluctuations. For a zero-temperature
quantum phase transition, the behavior is potentially differ-
ent, depending on the form of the dynamic action. We have

studied three cases. In the absence of dissipation, even very
large droplets can always tunnel, but with a rate that de-
creases exponentially with the droplet volume. This changes
in the presence of �Ohmic� dissipation. The qualitative be-
havior now depends on the dimensionless dissipation
strength �. For ��1, the droplet still tunnels albeit with a
further reduced rate while for ��1, tunneling ceases and the
droplet magnetization becomes static. For overdamped dy-
namics without order parameter conservation, � is propor-
tional to the volume of the droplet core. Thus, sufficiently
large droplets always freeze in agreement with Refs. 16–18.
In the case of overdamped dynamics with order parameter
conservation as in the itinerant quantum ferromagnet, the
dissipation effects are further enhanced because the dimen-
sionless dissipation strength � for a droplet of linear core
size a is proportional to ad+1 rather than ad.

Let us comment on the order parameter symmetry. Our
explicit results have been for the case of a scalar �Ising�
order parameter. However, the analysis of the droplet exis-
tence in Sec. III relied on saddle-point arguments and thus
applies equally to continuous O�N� order parameters with
N�1. In contrast, to generalize the discussion of the dynam-
ics in Sec. IV to such order parameters, other types of fluc-
tuations �rotational ones� must be considered.

We also emphasize that we have discussed the case of an
isotropic attractive long-range interaction. Droplet formation
dominated by oscillating and/or anisotropic interactions such
as the dipolar or the RKKY interactions is likely of different
type and not considered here.

Finally, we briefly discuss the consequences of our results
for the �quantum� Griffiths effects in systems with long-
range spatial interactions. Because the power-law magnetiza-
tion tail only makes a subleading contribution to the free
energy of a magnetic droplet, such droplets can form on rare
�strongly coupled� spatial regions of the disordered system
essentially in the same way as in the case of short-range
interactions. Therefore, as long as droplet-droplet coupling
can be neglected, the Griffiths effects should be identical to
those in short-range interacting systems. However, it is clear
that the droplet-droplet coupling is more important for long-
range interactions than for short-range ones. This means, it
must be considered for lower droplet density and, in the
quantum case, for higher temperatures. The complicated
physics caused by the coupling of several droplets is beyond
the scope of this paper. Recently, it has been argued41 that
this coupling can qualitatively change the Griffiths effects at
least in some cases. A complete understanding of this phe-
nomenon remains a task for the future.
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