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Rounding of a first-order quantum phase transition to a strong-coupling critical point

Fawaz Hrahsheh,1 José A. Hoyos,2 and Thomas Vojta1

1Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
2Instituto de Fı́sica de São Carlos, Universidade de São Paulo, C.P. 369, São Carlos, São Paulo 13560-970, Brazil

(Received 28 August 2012; published 10 December 2012)

We investigate the effects of quenched disorder on first-order quantum phase transitions on the example of the
N -color quantum Ashkin-Teller model. By means of a strong-disorder renormalization group, we demonstrate
that quenched disorder rounds the first-order quantum phase transition to a continuous one for both weak and
strong coupling between the colors. In the strong-coupling case, we find a distinct type of infinite-randomness
critical point characterized by additional internal degrees of freedom. We investigate its critical properties in
detail and find stronger thermodynamic singularities than in the random transverse field Ising chain. We also
discuss the implications for higher spatial dimensions as well as unusual aspects of our renormalization-group
scheme.

DOI: 10.1103/PhysRevB.86.214204 PACS number(s): 75.10.Nr, 05.70.Jk, 75.40.−s

I. INTRODUCTION

The effects of disorder on quantum phase transitions
have gained increasing attention recently, in particular since
experiments have discovered several of the exotic phenomena
predicted by theory (see, e.g., Refs. 1 and 2). Most of the
existing work has focused on continuous transitions while first-
order quantum phase transitions have received less attention.

In contrast, the influence of randomness on pure systems
undergoing a classical first-order transition has been com-
prehensively studied. Using a beautiful heuristic argument,
Imry and Wortis3 reasoned that quenched disorder should
round classical first-order phase transitions in sufficiently low
dimension and thus produce new continuous phase transitions.
This analysis was extended by Hui and Berker.4 Aizenman
and Wehr5 rigorously proved that first-order phase transitions
cannot exist in disordered systems in dimensions d � 2. If
the randomness breaks a continuous symmetry, the marginal
dimension is d = 4.

The question of whether or not disorder can round a first-
order quantum phase transition (QPT) to a continuous one
was asked by Senthil and Majumdar,6 and, more recently,
by Goswami et al..7 Using a strong-disorder renormalization-
group (SDRG) technique, they found that the transitions in
the random quantum Potts and clock chains6 were governed
by the well-known infinite-randomness critical point (IRCP)
of the random transverse-field Ising chain.8,9 The same holds
for the N -color quantum Ashkin-Teller (AT) model in the
weak-coupling (weak interaction between the colors) regime.7

This implies that disorder can indeed round first-order quantum
phase transitions.

In the strong-coupling regime of the AT model, on the other
hand, the renormalization-group (RG) analysis of the authors
of Ref. 7 breaks down. Goswami et al. speculated that this
implies persistence of the first-order QPT in the presence of
disorder, requiring important modifications of the Aizenman-
Wehr theorem. However, shortly after, Greenblatt et al.10,11

proved rigorously that the Aizenman-Wehr theorem also holds
for quantum systems at zero temperature.

In this paper, we resolve the apparent contradiction between
these results. We show that quenched disorder rounds the
first-order QPT of the AT model in the strong-coupling

regime as well as in the weak-coupling regime. Moreover,
we unveil a distinct type of infinite-randomness critical point
governing the transition in the strong-coupling regime. It is
characterized by additional internal degrees of freedom which
appear because a higher symmetry is dynamically generated at
criticality. As a consequence, the critical point displays even
stronger thermodynamic singularities than the transverse-field
Ising IRCP. To obtain these results, we have developed an
implementation of the SDRG method that works for both weak
and strong coupling. In particular, this method can deal with
the diverging intercolor interactions as well as the associated
additional degeneracies. A schematic of the resulting RG flow
in the critical plane is shown in Fig. 1.

Our paper is organized as follows: In Sec. II, we define the
model and discuss a few of its basic properties. Section III is
devoted to our strong-disorder renormalization-group scheme.
The resulting phase diagram and observables are discussed in
Sec. IV. We conclude in Sec. V.

II. QUANTUM ASHKIN-TELLER MODEL

The Hamiltonian of the one-dimensional N -color quantum
AT model12–14 is given by

H = −
N∑

α=1

L∑
i=1

(
Jiσ

z
α,iσ

z
α,i+1 + hiσ

x
α,i

)

−
N∑

α<β

L∑
i=1

(
εJ,iJiσ

z
α,iσ

z
α,i+1σ

z
β,iσ

z
β,i+1 + εh,ihiσ

x
α,iσ

x
β,i

)
.

(1)

Here, i indexes the lattice sites, α and β index colors, and
σx and σ z are the usual Pauli matrices. The interactions Ji

and transverse fields hi are independent random variables
taken from distributions restricted to positive values, while
εh,i and εJ,i (also restricted to be positive) parametrize the
strength of the coupling between the colors.15 Various versions
of the AT model have been used to describe the layers of
atoms absorbed on surfaces, organic magnets, current loops
in high-Tc superconductors, as well as the elastic response
of DNA molecules. Note the invariance of the Hamiltonian
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FIG. 1. (Color online) Schematic of the renormalization-group
flow diagram in the disorder-coupling strength parameter space. For
ε < εc (left arrows), the critical flow approaches the usual Ising
infinite-randomness critical point of Ref. 9. For ε > εc (right arrows),
we find a distinct infinite-randomness critical point with even stronger
thermodynamic singularities.

under the following duality transformation: σ z
α,iσ

z
α,i+1 → τ x

α,i ,
σx

α,i → τ z
α,iτ

z
α,i+1, Ji � hi , and εJ,i � εh,i , where τ x and τ z

are the dual Pauli operators. The bulk phases of the AT model
(1) are easily understood. If the typical interaction Jtyp is larger
than the typical field htyp, the system is in the ordered (Baxter)
phase in which each color orders ferromagnetically. When
htyp � Jtyp, the model is in the paramagnetic phase. If there is
a direct transition between these two phases, duality requires
that it occurs at Jtyp = htyp. In the clean version of our system
with N � 3, the QPT between the paramagnetic and ordered
(Baxter) phases is of first-order type.12–14,16

III. STRONG-DISORDER RENORMALIZATION GROUP

To tackle the Hamiltonian (1), we now develop a SDRG
method. In the weak-coupling regime (εh,εJ � εc, where εc

is some N -dependent threshold), our method agrees with that
of Goswami et al..7 Here, we focus on the strong-coupling
regime εh,εJ � εc where the method of the authors of Ref. 7
breaks down.

The basic idea of the SDRG method consists in identifying
the largest local energy scale and perturbatively integrating
out the corresponding high-energy degree of freedom. As we
are in the strong-coupling regime, this largest local energy is
either a four-spin interaction (“AT interaction”) ki = εJ,iJi or
a two-color field-like term (“AT field”) gi = εh,ihi . We thus
define our high-energy cutoff � = max{ki,gi}.

We now derive the decimation procedure. If the largest local
energy is an AT field located, say, at site 2, the unperturbed
Hamiltonian for the decimation of this site reads

H0 = − g2

εh,2

N∑
α=1

σx
α,2 − g2

∑
α<β

σ x
α,2σ

x
β,2. (2)

The ground state (GS) of H0 is |φ0〉 = | → , → , . . . , →〉,
with energy E0 = −Ng2/εh,2 − N (N − 1)g2/2, where each
arrow represents a different color. Flipping n colors leads to

(
N

n

)
degenerate excited states with energy En = E0 + 2ng2/εh,2 +
2n(N − n)g2. In the strong-coupling regime, εh � 1, the state

−1N

True Ground
State Sector

Pseudo Ground
State Sector

0 1 2
. . .

E
ne

rg
y

∼ Ω

N # of flips

∼ Ω /

−2N

hε

FIG. 2. (Color online) Spectrum of the unperturbed Hamiltonian
(2) as a function of the number of colors flipped with respect to
the ground state | → , → , . . . , →〉. As long as T � �/εh, the
pseudo ground state |φ′

0〉 = |←,←, . . . ,←〉 can be neglected when
computing observables (stage 1 of the RG). When T � �/εh, |φ0〉
and |φ′

0〉 become effectively degenerate implying that both states need
to be taken into account (stage 2 of the RG).

|φ′
0〉 = |←,←, . . . ,←〉 plays a special role. Its energy E′

0 =
Ng2/εh,2 − N (N − 1)g2/2 differs from that of the true ground
state only by the subleading Ising term E′

0 − E0 = 2Ng2/εh,2

(see Fig. 2). It can thus be considered a “pseudo ground state”
which may be important for a correct description of the low-
energy physics. The true and pseudo ground states each have
their own sets of low-energy excitations which we call the
ground-state and pseudo-ground-state sectors of low-energy
states.

The couplings of site 2 to its neighbors

V = − k1

εJ,1

N∑
α=1

σ z
α,1σ

z
α,2 − k1

∑
α<β

σ z
α,1σ

z
α,2σ

z
β,1σ

z
β,2

− k2

εJ,2

N∑
α=1

σ z
α,2σ

z
α,3 − k2

∑
α<β

σ z
α,2σ

z
α,3σ

z
β,2σ

z
β,3, (3)

is the perturbation part of the Hamiltonian. We now decimate
site 2 in the second-order perturbation theory, keeping both the
true ground state and the pseudo ground state. It is important to
note that second-order perturbation theory does not mix states
from the two sectors as long as N > 4. (The sectors are coupled
in a higher order of perturbation theory, but these terms are
irrelevant at our IRCP). After decimating site 2, the effective
interaction Hamiltonian of the neighboring sites reads (in the
large-εJ limit)

H̃eff = − k̃

ε̃J

N∑
α=1

σ z
α,1σ

z
α,3 − k̃

∑
α<β

σ z
α,1σ

z
α,3σ

z
β,1σ

z
β,3 − ω̃ζ̃ , (4)

with

k̃ = k1k2

2(N − 2)g2
, ε̃J = εJ,1εJ,2

2

N − 1

N − 2
,ω̃ = Ng2/εh,2.

(5)

Here, ζ̃ = ±1 is a new Ising degree of freedom which
represents the energy splitting between the true and the pseudo
ground states. In the large-εJ regime, it is only very weakly
coupled to the rest of the chain and can be considered free. In
Fig. 3(a), we sketch this decimation procedure.

The decimation of a bond can be treated in the same way. If
an AT four-spin interaction, say k2, is the largest local energy,
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ε~J

ε~h

k
~

(b)

(a) , ω

ω
,g~ ~

~

~μ

FIG. 3. (Color online) (a) Decimating a site results in a renor-
malized bond (characterized by k̃ and ε̃J ) between its neighbors, and
it introduces an extra binary “sector” degree of freedom represented
as an Ising spin ζ̃ = ±1 in an external field ω̃ [see Eq. (7)]. (b)
Decimating a bond results in a renormalized site characterized by g̃,
ε̃h and another sector degree of freedom.

the unperturbed Hamiltonian reads

H0 = − k2

εJ

N∑
α=1

σ z
α,2σ

z
α,3 − k2

N∑
α<β

σ z
α,2σ

z
α,3σ

z
β,2σ

z
β,3. (6)

Its GS is obtained by any sequence of parallel nearest-
neighbors pairs (e.g., |φ0〉 = |↑↑,↑↑,↓↓,↓↓,↑↑,↓↓, . . . ,

↑↑〉) with energy E0 = −Nk2/εJ,2 − N (N − 1)k2/2. As
above, in the strong-coupling limit εJ,2 � 1, H0 has a pseudo
GS consisting of a sequence of antiparallel nearest-neighbors
pairs (e.g., |φ′

0〉 = |↑↓,↑↓,↓↑,↓↑,↑↓,↓↑, . . . ,↑↓〉) with en-
ergy E′

0 = Nk2/εJ − N (N − 1)k2/2.
When integrating out the bond, the two-site cluster gets

replaced by a single site which contains one additional internal
binary degree of freedom, namely, whether the cluster is in the
GS sector or in the pseudo GS sector. Its effective Hamiltonian
reads

H̃eff = − g̃

ε̃h

N∑
α=1

σx
α,2 − g̃

∑
α<β

σ̃ x
α,2σ̃

x
β,2 − ω̃ζ̃ (7)

with

g̃ = g2g3

2k2[N − 2]
, ε̃h = εh,2εh,3

2

N − 1

N − 2
, ω̃ = Nk2/εJ,2.

(8)

Here, ζ̃ distinguishes the two sectors as before. The duality of
the Hamiltonian can be seen by comparing Eqs. (5) and (8)
after exchanging the roles of k and g as well as εh and εJ .

Note that the magnetic moment μ̃ of the new effective site
depends on the internal degree of freedom ζ̃ [see Fig. 3(b)]
because neighboring spins are parallel in the GS sector but
antiparallel in the pseudo GS sector. We will come back to this
point when discussing observables.

The SDRG proceeds by iterating these decimations. In this
process, the coupling strengths εJ , εh flow to infinity if their
initial values are greater than some εc(N ). This means that
the Ising terms Ji,hi become less and less important with
decreasing energy scale �. The large-ε approximation thus
becomes asymptotically exact. The remaining energies are
the AT four-spin interactions ki and the AT fields gi . Their
recursions relations have the same multiplicative structure as
the recursions of Fisher’s solution9 of the random transverse-
field Ising model. The flow of the distributions P (ki), R(gi),
and their fixed points are thus identical to those of Fisher’s
solution, see Fig. 1. We conclude that the distributions of k,
g have an infinite-randomness critical fixed point featuring

exponential instead of power-law scaling.8,9,17 As the Ising
coupling Ji,hi have vanished, this critical fixed point has the
symmetry of the AT interaction and field terms which is higher
than that of the full Hamiltonian.

IV. PHASE DIAGRAM AND OBSERVABLES

The zero-temperature phase diagram of our system is
determined by the low-energy limit of the SDRG flow.
There are three classes of fixed points parameterized by
the distance from criticality r = ln(gtyp/ktyp) = 〈ln g〉 − 〈ln k〉
(where 〈· · · 〉 denotes the disorder average): The critical fixed
point at r = 0, and two lines of fixed points for the ordered
(r < 0) and for the disordered (r > 0) Griffiths phases. This
implies that there is a direct continuous phase transition
between the ordered (Baxter) and disordered phases. We
found no evidence for additional phases or phase transitions.
In agreement with the Aizenman-Wehr theorem,10 we thus
conclude that disorder turns the clean first-order QPT into a
continuous QPT in both strong-coupling and weak-coupling
regimes.

We now turn to the behavior of observables at low tem-
peratures. Let us fix the intercolor-coupling parameter at some
ε > εc and tune the transition by the ratio htyp/Jtyp = gtyp/ktyp

(see Fig. 4). The basic idea is as follows.18 We decimate the
system until the cutoff energy scale � reaches the temperature
T . For low enough T , the distributions of all energy scales
in the renormalized system become very broad, and thus,
the remaining degrees of freedom can be considered as free.
Applying this procedure, we have to distinguish two stages
depending on the importance of the pseudo ground state. (1)
Both AT and Ising couplings are above the temperature. (In
this stage, we decimate sites and bonds whose internal sector
degrees of freedom are frozen in the true ground state, ζ̃ = 1.)
(2) The temperature is below the AT couplings but above the
Ising couplings. (Here we still decimate sites and bonds, but
their internal degrees of freedom are free, i.e., they can be in
either of the two sectors, ζ̃ = ±1.)

FM

OG

DG

PM

OG

DG

Ashkin-Teller

�r

ur

FM

r 

 

PM

cε ε

Ising

cr0

FIG. 4. (Color online) Phase diagram of the N -color quantum
Ashkin-Teller model as function of r = ln(htyp/Jtyp) and the in-
tercolor coupling ε at fixed disorder strength. The critical line is
located at r = rc = 0 (Jtyp = htyp) as expected from the duality
transformation. PM and FM denote the conventional paramagnetic
and ferromagnetic (Baxter) phases. OG and DG denote the ordered
and disordered Griffiths phases.
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Let us illuminate this RG scheme on the example of the
entropy.19 When the RG flow stops at � = T , all spins are
completely free. A surviving cluster has 2N available states
(two per independent color) giving an entropy contribution
of N ln 2 (i.e., Schain = nT N ln 2), where n� is the density
of surviving clusters at energy scale � (Ref. 9). Moreover,
during stage 2 of the flow, residual entropy was accumulated
in the internal degrees of freedom, each of them contributing
ln 2 to the entropy. Noticing that each stage-2 RG decimation
generates one extra degree of freedom, and that stage 2
starts when �/εJ,h = T , (εx is the typical value of εx,i

at energy scale �), the extra contribution to the entropy
is Sextra = [wJ (nεJ T − nT ) + wh(nεhT − nT )] ln 2, with wJ =
1 − wh being the fraction of coupling decimations in the entire
stage 2 of the RG flow. To compute Sextra we need to know
how εJ and εh depend on �. From the recursions (8) and (5),
it is clear that ln εh (and ln εJ ) scale like the number of sites
(bonds) in a renormalized cluster (larger bond).

At criticality, wJ = wh = 1/2, n� ∼ [ln(�I/�)]−1/ψ ,
with ψ = 1/2 being the tunneling exponent, and ln εh =
ln εJ ∼ [ln(�I/�)]φ , with φ = 1

2 (1 + √
5) (Refs. 9 and 20).

Thus, summing the two contributions we find that

S = C1

[
ln

(
�I

T

)]− 1
ψφ

ln 2 + C2

[
ln

(
�I

T

)]− 1
ψ

N ln 2,

(9)

where C1 and C2 are nonuniversal constants, and �I is the
bare energy cutoff. As φ > 1, the low-T entropy becomes
dominated by the extra degrees of freedom S → Sextra ∼
[ln(�I/T )]−1/(φψ).

In the ordered Griffiths phase (r < 0), wJ → 1 and ln εJ =
Azνψ(φ−1) ln(�I/�), with A being a nonuniversal constant of
order unity, ν = 2 the correlation length exponent, and z =
1/(2|r|) the dynamical exponent. As n� ∼ |r|ν(�/�I )1/z, we
find that

Sextra ∼ |r|ν(T/�I )1/(z+Azφ ) ln 2, (10)

which dominates over the chain contribution proportional to
T 1/zN ln 2. As expected from duality, the same result holds
for the disordered phase (r > 0).

To discuss the magnetic susceptibility, we need to find the
effective magnetic moment μeff of a cluster surviving at the
RG energy scale � = T . If all internal degrees of freedom
were in their ground state, μeff would be given by the number
of sites in the cluster. However, analogously to the entropy,
μeff is modified because of the stage 2 of the RG flow. In
this stage, the internal degrees of freedom are free, meaning
not all spins in a surviving cluster are parallel, reducing the
effective moment. A detailed analysis based on the central
limit theorem21 gives μeff ∼ [ln(�I/T )]φ/2+1/2 at criticality
and μeff ∼ rνψ(1−φ)[ln(�I/T )]1/2 in the disordered Griffiths
phase, as well as μeff ∼ r−φ/2T −1/(2z) in the ordered Griffiths
phase.

The magnetic susceptibility χ (T ) can now be computed. All
eliminated clusters had AT fields greater than the temperature,
and thus do not contribute to χ since they are fully polarized in
the x direction, whereas the surviving clusters are effectively
free and contribute with a Curie term χ ∼ μ2

effnT /T . We find

that

χ ∼ [ln(�I/T )]φ+1−1/ψ/T (11)

in the critical region, while it becomes

χ ∼ rν+2νψ(1−φ)T 1/z−1 ln(�I/T ) (12)

in the disordered Griffiths phase, and take a Curie form χ ∼
|r|ν−φT −1 in the ordered Griffiths phase.

V. CONCLUSION

In summary, we have solved the random quantum Ashkin-
Teller model by means of a strong-disorder renormalization-
group method that works not just for weak-coupling but also
in the strong-coupling regime and yields asymptotically exact
results. In the concluding paragraphs, we put our results into
broader perspective.

First, we have demonstrated that random disorder turns
the first-order QPT between the paramagnetic and Baxter
phases into a continuous one not just in the weak-coupling
regime but also in the strong-coupling regime. This resolves the
seeming contradiction between the quantum Aizenman-Wehr
theorem10,11 and the conclusion that the first-order transition
may persist for sufficiently large coupling strength.7

The resulting continuous transition is controlled by two
different IRCPs in the weak- and strong-coupling regimes.
For weak coupling, the critical point is in the universality
class of the random transverse-field Ising chain.9 For strong
coupling, we find a distinct type of IRCP which features
a higher symmetry than the underlying Hamiltonian. The
associated internal degrees of freedom lead to even stronger
thermodynamic singularities both at criticality and in the
Griffiths phases.

Our results apply to N > 4 colors where the true and
pseudo ground-state sectors are not coupled. As a result, the
Ising terms in the Hamiltonian are irrelevant perturbations
(in the renormalization-group sense) at our IRCP. The case
N � 4 is special because the two sectors get coupled and thus
requires a separate investigation. Interestingly, novel behavior
has been recently verified for the classical transition in the
two-dimensional AT model22 for N = 3.

Our explicit calculations were for one space dimension.
However, we believe that many aspects of our results carry
over to higher dimensions. In particular, the SDRG recursion
relations take the same form in all dimensions (as they are
purely local). This implies that the RG flow for large intercolor
coupling ε will be toward ε → ∞ as in one dimension.
Moreover, the flows of the AT energies g and k (although
not exactly solvable in d > 1) are identical to the flows of the
random transverse-field Ising model in the same dimension.
In two and three dimensions, these flows have been studied
numerically,23–25 yielding IRCPs as in one dimension. We
thus conclude that the strong-coupling regime of the random
quantum AT model will be controlled by an Ashkin-Teller
IRCP not just in one dimension but also in two and three
dimensions.

We note that our method is also interesting from a general
renormalization-group point of view. After a decimation, the
resulting system cannot be represented solely in terms of a
renormalized quantum AT Hamiltonian because the internal

214204-4
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degree of freedom needs to be taken into account. Normally,
the appearance of new variables dooms an RG scheme.26

Here, however, the new variables, despite their influence on
observables, are inert in the sense that they do not influence
the RG flow of the other terms in the Hamiltonian, which
makes the problem tractable. We expect that this insight may
be applicable to renormalization-group schemes in other fields.

The strong-disorder RG approach to the random quantum
AT model gives asymptotically exact results for both suffi-
ciently weak and sufficiently strong coupling (ε � 1, ε � 1),
see Fig. 1. The behavior for moderate ε is not exactly solved. In
the simplest scenario, the weak-coupling and strong-coupling

IRCPs are separated by a unique multicritical point at some
intermediate coupling, however, more complicated scenarios
cannot be excluded. The resolution of this question will likely
come from numerical implementations of the SDRG and/or
(quantum) Monte Carlo simulations.
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