23 research outputs found

    Defining the fine structure of promoter activity on a genome-wide scale with CISSECTOR

    Get PDF
    Classic promoter mutagenesis strategies can be used to study how proximal promoter regions regulate the expression of particular genes of interest. This is a laborious process, in which the smallest sub-region of the promoter still capable of recapitulating expression in an ectopic setting is first identified, followed by targeted mutation of putative transcription factor binding sites. Massively parallel reporter assays such as survey of regulatory elements (SuRE) provide an alternative way to study millions of promoter fragments in parallel. Here we show how a generalized linear model (GLM) can be used to transform genome-scale SuRE data into a high-resolution genomic track that quantifies the contribution of local sequence to promoter activity. This coefficient track helps identify regulatory elements and can be used to predict promoter activity of any sub-region in the genome. It thus allows in silico dissection of any promoter in the human genome to be performed. We developed a web application, available at cissector.nki.nl, that lets researchers easily perform this analysis as a starting point for their research into any promoter of interest.</p

    High-throughput assessment of context-dependent effects of chromatin proteins

    Get PDF
    Background: Chromatin proteins control gene activity in a concerted manner. We developed a high-throughput assay to study the effects of the local chromatin environment on the regulatory activity of a protein of interest. The assay combines a previously reported multiplexing strategy based on barcoded randomly integrated reporters with Gal4-mediated tethering. We applied the assay to Drosophila heterochromatin protein 1a (HP1a), which is mo

    Clustering of Drosophila housekeeping promoters facilitates their expression

    No full text
    Housekeeping genes of animal genomes cluster in the same chromosomal regions. It has long been suggested that this organization contributes to their steady expression across all the tissues of the organism. Here, we show that the activity of Drosophila housekeeping gene promoters depends on the expression of their neighbors. By measuring the expression of ∼85,000 reporters integrated in Kc167 cells, we identified the best predictors of expression as chromosomal contacts with the promoters and terminators of active genes. Surprisingly, the chromatin composition at the insertion site and the contacts with enhancers were less informative. These results are substantiated by the existence of genomic "paradoxical" domains, rich in euchromatic features and enhancers, but where the reporters are expressed at low level, concomitant with a deficit of interactions with promoters and terminators. This indicates that the proper function of housekeeping genes relies not on contacts with long distance enhancers but on spatial clustering. Overall, our results suggest that spatial proximity between genes increases their expression and that the linear architecture of the Drosophila genome contributes to this effect.This work was supported by the Spanish Ministry of Economy and Competitiveness, “Centro de Excelencia Severo Ochoa 2013-2017,” SEV-2012-0208, Plan Nacional BFU2012-37168, NWO-ALW VICI, ERC Advanced Grant 293662 (B.v.S.), ERC Synergy Grant 609989 (G.J.F.), and the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 608959 (R.C.)

    Clustering of Drosophila housekeeping promoters facilitates their expression

    No full text
    Housekeeping genes of animal genomes cluster in the same chromosomal regions. It has long been suggested that this organization contributes to their steady expression across all the tissues of the organism. Here, we show that the activity of Drosophila housekeeping gene promoters depends on the expression of their neighbors. By measuring the expression of ∼85,000 reporters integrated in Kc167 cells, we identified the best predictors of expression as chromosomal contacts with the promoters and terminators of active genes. Surprisingly, the chromatin composition at the insertion site and the contacts with enhancers were less informative. These results are substantiated by the existence of genomic "paradoxical" domains, rich in euchromatic features and enhancers, but where the reporters are expressed at low level, concomitant with a deficit of interactions with promoters and terminators. This indicates that the proper function of housekeeping genes relies not on contacts with long distance enhancers but on spatial clustering. Overall, our results suggest that spatial proximity between genes increases their expression and that the linear architecture of the Drosophila genome contributes to this effect.This work was supported by the Spanish Ministry of Economy and Competitiveness, “Centro de Excelencia Severo Ochoa 2013-2017,” SEV-2012-0208, Plan Nacional BFU2012-37168, NWO-ALW VICI, ERC Advanced Grant 293662 (B.v.S.), ERC Synergy Grant 609989 (G.J.F.), and the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 608959 (R.C.)
    corecore