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ABSTRACT 

Classic promoter mutagenesis strategies can be 

used to study how proximal promoter regions reg- 
ulate the expression of particular genes of interest. 
This is a laborious process, in which the smallest 
sub-region of the promoter still capable of recapitu- 
lating expression in an ectopic setting is first identi- 
fied, f ollowed b y targeted m utation of putative tran- 
scription factor binding sites. Massively parallel re- 
porter assays such as survey of regulatory elements 

(SuRE) pr o vide an alternative way to study millions of 
promoter fragments in parallel. Here we show how a 

g eneraliz ed linear model (GLM) can be used to trans- 
form genome-scale SuRE data into a high-resolution 

genomic track that quantifies the contribution of lo- 
cal sequence to promoter activity. This coefficient 
track helps identify regulatory elements and can be 

used to predict promoter activity of any sub-region 

in the genome. It thus allows in silico dissection 

of any promoter in the human genome to be per- 
formed. We developed a web application, available at 
cissector.nki.nl , that lets researchers easily perform 

this analysis as a starting point for their research into 

an y pr omoter of interest. 

INTRODUCTION 

The le v el at which each gene in the human genome is e x- 
pressed is dictated by a complex interplay between tran- 
scription factors and gene-specific regulatory elements en- 
coded in the DNA. Since almost e v ery gene r equir es a dis- 
tinct pattern of expression across cell types, the ar chitectur e 
of both the promoter region proximal to the transcription 

start site (TSS) and the more distal enhancer regions varies 
widely in terms of the identity, strength, and spatial arrange- 

ment of the transcription factor (TF) binding sites they con- 
tain ( 1–3 ). 

Although enhancers are undoubtedly important to con- 
trol the expression of most genes, it has been estimated that 
nearly 50% of the variance in genome-wide gene expression 

in a gi v en cell type may be explained by proximal promoter 
sequences ( 4 ). Thus, it is important to identify and charac- 
terize these sequences for each promoter. Towards this goal, 
one widely used strategy has been to isolate the candidate 
pr oximal pr omoter region and test its ability to dri v e the 
expression of a transcriptional reporter in an ectopic set- 
ting. Subsequent assays on various sub-regions then serve to 

identify the smallest part of the promoter that is still capa- 
ble of (partially) recapitulating the endogenous expression 

pattern of the gene ( 5–8 ). This classic deletion approach, 
howe v er, is laborious and ther efor e only feasible for testing 

a limited set of regions. 
Mor e r ecently, massi v ely parallel reporter assays 

(MPRAs) were introduced that can test large numbers of 
reporter constructs sim ultaneousl y ( 9 , 10 ). MPRAs have 
now been e xtensi v ely used to map promoter or enhancer 
activity in genomes across a wide range of species and cell 
types ( 11–15 ). In MPRAs designed to detect promoter 
activity, candidate sequences are cloned in front of a 

promoter-less transcription unit; hence, they will only 

produce a transcript if they harbor autonomous promoter 
acti vity. A particularly powerful v ersion of this latter assay 

is SuRE, a MPRA that employs molecular barcoding to 

query hundreds of millions of random genomic DNA 

fragments ( 4 , 16 ). While the resulting data provide detailed 

maps of autonomous promoter activity throughout the 
genome, it has remained challenging to extract from these 
data the key sequences that dri v e the acti vity of each 

individual promoter. 
We previously reported proof-of-principle ( 4 ) that gen- 

eralized linear modeling (GLM) can be used to deconvolve 
SuRE data, thereby quantifying how short sequences within 
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each promoter contribute to its overall activity. However, in 

this previous study we calculated GLM coefficient tracks 
for only a handful of individual human promoters, and the 
limited depth of the SuRE data did not allow for high- 
r esolution analysis ( 4 ). Her e, we further optimized and ap- 
plied the algorithm to generate full-genome GLM coeffi- 
cient tracks. As input, we used state-of-the-art SuRE data 

from two cell types (K562, a leukemia cell line; and HepG2, 
a li v er carcinoma cell line), each with a complexity of nearly 

2.4 billion assayed fragments of roughly 150–500 bp, yield- 
ing an average genomic coverage of ∼240x ( 16 ). This high 

coverage greatly benefits the resolution of the predictions. 
Furthermore, we de v eloped an interacti v e w e b application 

( https://cissector.nki.nl ) that enables r esear chers to inspect 
these profiles, and to view predictions of intrinsic promoter 
activity f or an y region in the human genome. This visual- 
ization can be used to easily identify the minimal promoter 
r egion that r etains most of the full promoter activity. Our 
tools provide a rational starting point for detailed func- 
tional dissection of individual promoters. 

MATERIALS AND METHODS 

SuRE datasets 

Genome-wide SuRE experimental data were taken from 

( 16 ), to which we also refer for a description of quality 

contr ol pr ocedures used. We combined data from all eight 
SuRE libr aries, two libr aries constructed from each of four 
distinct individual human genomes, and each containing 

∼300 million barcoded DNA elements. An element is de- 
fined as a unique genomic segment, in terms of chromo- 
some, start and end position, and orientation. After pro- 
cessing, each element had associated with it the following 

set of DNA barcode counts: (i) the number of observations 
in the sequenced inverted PCR (iPCR) input library, (ii) 
in the cDNA library for three K562 biological replicates 
and (iii) in the cDNA library for two HepG2 biological 
replica tes. Da ta from the eight libraries were collated as de- 
scribed below and then partitioned into genomic blocks of 
a pproximatel y 10 Mb in length. GLM fits were performed 

independently for each block. Blocks on the same chromo- 
some were chosen so as to be separated by gaps in joint li- 
br ary cover age in order to ensure that no elements belonged 

to more than one such block. 
For validation of our GLM models, a second SuRE 

dataset (GEO accession GSE206935) was generated in 

K562 cells from a focused SuRE library consisting of frag- 
ments from four bacterial artificial chromosomes (BACs; 
CTD-3252A18, CTD-3156P24, CTD-2153L18, and 

CTD-3075C4) containing four genomic regions covering 

se v eral housekeeping genes (chr5:139961667–140166117, 
chr1:109571381–109687521, chr6:26115655–26242415, 
and chr1:155087497–155235687, respecti v el y). Ma pping 

errors cause a small number of B AC fr agments to map to 

positions outside the original BAC regions; these elements 
were excluded from our analysis. 

GLM analysis of SuRE data 

We used a generalized linear model (GLM) based on the 
Poisson family, with a logarithmic link function guarantee- 

ing that the expected value of the count of each element 
is positi v e, which is well-suited for modeling sequencing 

counts in a regime where the expected counts are low. Note 
that for the Poisson distribution the expected variance in the 
count for each element is equal to the expected count itself, 
i.e. all variation is due to the sampling error associated with 

the discrete count distribution, as opposed to other sources 
of variation. 

The GLM frame wor k of CISSECTOR allows for the in- 
clusion of both spatial and non-spatial covariates. Non- 
spa tial covaria tes can include any other information about 
individual elements that may influence the observed counts. 
For the GLM used in this paper, the model took the follow- 
ing form: 

y i ∼ Poisson ( e μi ) 

where 

μi = 

J ∑ 

j= 1 
x i j β j + L i θL + 

K ∑ 

k= 1 
z ik 

(
θk, 0 + ( log n i ) θk, 1 + ( log n i ) 2 θk, 2 

)

Her e, y i r epr esents the barcode count for element i , which 

is modeled as a Poisson-distributed variable with mean 

e μi . For each cell line (K562 or HepG2), barcode counts 
from biological replicates within each library were summed, 
yielding a single count y i for each cell type. Since these 
counts have not been normalized for input or sequenc- 
ing depth, the pooling step effecti v ely gi v es each biologi- 
cal replicate le v erage ov er the model coef ficient estima tion 

proportional to its sequencing depth. The coefficient β j , 
corresponding to genomic bin j , contributes to the pre- 
dicted mean of element i only if x i j ∈ [0 , 1], which indicates 
w hether element i overla ps with genomic bin j , is non-zero. 
Since a logarithmic link function was used, coefficients re- 
flect the estimated additi v e effect of the corresponding co- 
variate on the natural logarithm of the expected count. The 
coef ficient estima ted for each bin reflects the orienta tion- 
specific effect of including it in the genomic segment that 
dri v es the reporter. Bins for a gi v en orientation are non- 
overlapping and collectively cover all genomic regions with 

non-zero SuRE library coverage. 
Theoretically, at a high enough library complexity, the 

number of spa tial covaria tes for a gi v en strand could ap- 
proach or equal the combined length of the areas with 

non-zero coverage, with a uniform bin length of one base- 
pair and x i j set to 1 for all overlapping elements (and 0 

for all others). In practice, howe v er, adjacent genomic po- 
sitions frequentl y overla p identical sets of elements, lead- 
ing to redundancy among predictors and convergence is- 
sues due to collinearity. To address this technical issue, we 
chose to group each set of consecuti v e genomic positions 
that overlap the same set of elements into a genomic ‘bin’. 
A single coefficient β j was fit for that bin. To facilitate im- 
plementation of penalized r egr ession (see below), the in- 
dicator x i j was set to 

√ 

� j , the square root of the length 

( � j ) of bin j , for all elements i that contain bin j , and to 

zero otherwise. Finally, for the purpose of making predic- 
tions outside the training set, the predicted effect of includ- 
ing any additional single genomic base pair in the reporter 
construct was taken as β j divided by 

√ 

� j . 
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Various non-spa tial covaria tes can be included in a CIS- 
SECTOR fit. The ones used in this paper reflect the partic- 
ular structure of the SuRE dataset. θL captures the effect 
of variation in element length ( L i ) on SuRE element ex- 
pr ession, pr esumably due to differences in transfection effi- 
ciency for plasmids of different length. Data for each of the 
K = 8 distinct SuRE libraries used in the combined model 
were generated separately, resulting in library-specific dif- 
ferences in sequencing depth for both input (iPCR) and 

cDNA barcode counts. In the equation above, z ik ∈ [0 , 1] is 
an indicator variable that is set to unity if element i is from 

library k, and otherwise to zero. θk, 0 is a library-specific co- 
ef ficient tha t primarily accounts for dif ferences in the com- 
bined sequencing depth of the biological replicates for li- 
brary k. We originally expected input counts to have a sim- 
ple linear relationship with expression counts, gi v en that 
they reflect input library element concentrations. Howe v er, 
we observed weakly non-linear and library-specific relation- 
ships between input count and mean barcode count (Sup- 
plemental Figure S1), possibly as a consequence of low per- 
element input sequencing depth. To better capture these 
non-linear relationships, the natural logarithm of the in- 
put count n i and the square of that logarithm were both 

included as a covariate in the model, and library-specific co- 
efficients θk, 1 and θk, 2 estimated for each. 

Penalization 

Poisson r egr ession fits wer e implemented using the R pack- 
age glmnet ( 17 ). Coefficients of spatial covariates were pe- 
nalized to avoid overfitting and address the strong natural 
collinearity of adjacent genomic bins. This was done using 

elastic net ( 18 ) which imposes penalties on both the L 1 and 

L 2 norm of the coefficients. Both penalties discourage over- 
fitting. Additionally, the L 1 penalty ( λ1 ) promotes sparsity 

(i.e. coefficients for inacti v e genomic r egions ar e mor e likely 

to be set to zero) while the L 2 penalty ( λ2 ) helps address 
collinearity by encouraging similar coefficient estimates for 
neighboring bins that share many SuRE elements. Func- 
tions in glmnet make use of an alternati v e parameterization, 
α and λ, such that λ1 = αλ and λ2 = ( 1 − α) λ. To preserve 
sparsity of the design ma trix, no standardiza tion of covari- 
ates was used. Instead, the value of the covariate for all el- 
ements overlapping a given bin was set to the square root 
of the length of the bin. This is motiv ated b y the Bayesian 

conception of penalty parameters in terms of a prior distri- 
bution for coefficients ( 19 ). As all coefficients share the same 
penalty parameters, they share the same prior mean (equal 
to zero) and variance. If a bin has a length L, setting the co- 
v ariate v alue for overlapping elements to L 

1 / 2 ensures that 
the prior variance is the same regardless of whether each 

base pair is modeled separately or as part of a single block. 

Tuning of penalty parameters 

To reduce computational costs, we partitioned the dataset 
into continuous segments of over lapping libr ary fr agments, 
separated by regions of zero cov erage. Consecuti v e seg- 
ments were next combined into 361 genomic blocks of up 

to 8Mbp each. This length allows for different segments of 

the genome to be fit efficiently in parallel, circumventing 

memory limitations that did not allow for a single simul- 
taneous genome-wide fit. The glmnet function was used on 

a single genomic block to fit the optimal penalty parame- 
ters for the data from each cell type. Gi v en an αpenalty pa- 
rameter value, glmnet ( 17 ) efficiently fits a series of models, 
each with a different λ penalty parameter value. To validate 
the λ parameter for a gi v en α, an optimal λ value was cho- 
sen based on the model that maximized the log-likelihood 

of a test dataset (a random sample consisting of 10% of all 
blocks). The initial, largest λ in the ‘ λ path’ was selected 

to ensure that all coefficients in this model are penalized 

to zero, with the rest of the λ path being a decreasing se- 
ries e v enl y spaced in lo g-space. If the optimal λ selected via 

this method was also the smallest λ tested, a series of e v en 

smaller λs was tested. In all cases, the smallest λ e v entually 

produced an inferior model, and the optimal λ was selected. 
This λ selection procedure was repeated at various values of 
α, and the optimal α value was based on the ( α, λ) pair that 
maximized the test log-likelihood. Optimal penalty parame- 
ters were similar but not identical for the K562 and HEPG2 

genome-wide fits, with α values of 4 × 10 

−3 and 3 × 10 

−3 , 
and log( λ) values of 7.8 and 8.2, respecti v ely. 

Str ategy f or perf orming genome-wide fits 

After determining the optimal penalty parameters for each 

cell type, to reduce computational complexity, we calculated 

coefficients in a two-step process. First, non-spatial coeffi- 
cients were estimated in parallel across all 361 distinct ge- 
nomic b locks. The av erage of these coefficients was used to 

produce genome-wide estimates for the effects of these un- 
penalized non-spatial parameters. These coefficients were 
then used to calculate ‘offsets’ for each element, effecti v ely 

fixing the effect of the non-spatial coefficients on expres- 
sion across all subsequent fits genome-wide. In the second 

step, these offsets were used to estimate spatial covariates. In 

each step, genomic blocks were modeled in parallel, which 

gr eatly r educed the time r equir ed to run the model. For 
each cell type, a coefficient track with single base-pair coeffi- 
cients was constructed from the predicted coefficients of the 
v ariable-width bins b y dividing the bin coefficients by the 
square root of the width. These coefficients were assigned 

to e v ery base-pair within the variab le-width bin. 

Expr ession pr ediction 

Expression for a specific hypothetical fragment was pre- 
dicted using the coefficient track. For the region under con- 
sideration, a corresponding vector of single-base-pair coef- 
ficients was imported. The length parameter of the model 
was added to e v ery coefficient to account for this non- 
spa tial covaria te. Expression associa ted with any particular 
genomics window was predicted by exponentiating of the 
sum of these rescaled single-base-pair coefficients. Since the 
other non-spatial covariates were either library-specific or 
fragment-specific, they were ignored. As a result, predicted 

e xpression le v els can be interpreted as the mean e xpected 

expression count after normalizing for input concentration 

in the library and accounting for sequencing depth. 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/51/11/5499/7103209 by guest on 27 July 2023



5502 Nucleic Acids Research, 2023, Vol. 51, No. 11 

Validation using BAC library 

SuRE da ta genera ted using the B AC libr ary in K562 cells 
were used to test the performance of our GLM predictions 
on unobserved fr agments. B AC DNA fr agments with start 
and end positions that were identical to that of any frag- 
ment in one of the genome-wide SuRE libraries were re- 
moved prior to analysis. For each BAC element starting 

and ending within 1kb of an annotated transcription start 
site, pr edictions wer e generated using the K562 genome- 
wide GLM coefficient track. These predictions included the 
length penalty from the original model, but did not in- 
clude any other unpenalized coefficients, which correspond 

to specific libraries used in the original model. Because se- 
quencing depth can influence the magnitude of cDNA bar- 
code counts in a SuRE experiment, these predictions are 
expected to be proportional to, but not equal to, the ob- 
serv ed e xpression counts. While the per-element sequencing 

depth of K562 BAC SuRE experiments was higher than for 
genome-wide K562 ones, the effects of dropout and gen- 
eral ov er dispersion ne v ertheless r esulted in r elati v ely high- 
variance observed counts. To address this, BAC DNA frag- 
ments were first grouped together based on similar end- 
points. Specifically, each TSS region was split into 50 bp 

bins, and each element within a TSS region was assigned 

to a start bin and an end bin. Elements with the same start 
and end bin were grouped together. The mean log predicted 

expression and the log of the mean observ ed e xpression for 
each group was calculated. All Pearson correlations were 
calculated in log-space. 

Replicate correlation analysis 

To assess inter-cell-type versus intra-cell-type reproducibil- 
ity, we performed replicate-specific fits on an arbitrar- 
ily chosen 8Mbp subset of chr17 (for computational ef- 
ficiency). Each of the eight SuRE library datasets con- 
tained three K562 biological replicates, two HepG2 biolog- 
ical replicates, and one iPCR replicate. One replicate was 
selected from each library to generate three distinct K562 

datasets and two distinct HepG2 datasets, which were then 

fit separa tely. Correla tions betw een the resulting tracks w ere 
then computed. Because only a single iPCR replicate is 
available, these fits were based on the same iPCR counts. As 
these input counts are shared across cell types, they cannot 
explain the difference between intra-cell-type and inter-cell- 
type correlations. 

Cross-correlation analysis 

We selected TFs for which we had both a motif and ChIP 

data from ENCODE available. As a source of TF motifs, 
we used a curated set of position weight matrices from 

Ref. ( 20 ). These were transformed into a pseudo position- 
specific affinity matrix (pseudo-PSAM) by dividing the nu- 
cleotide counts of each position in the motif over the most 
abundant nucleotide ( 21 ). Optimal IDR-thresholded ChIP- 
seq peaks were downloaded from ENCODE ( 22 , 23 ). These 
peaks are typically se v eral hundred base-pairs wide, and 

only indicate the broad region bound by a TF. To better 
capture the TF affinity landscape within these regions, se- 
quences of e v ery peak were used to calculate total TF affin- 

ity scores at each position in the peak by summing over a 

sliding window (all PSAM positions overlapping a position) 
as well as both strands. The resulting score was assigned 

to the central nucleotide position of the pseudo-PSAM. 
We then ran a cross correlation on 1 kb regions surround- 
ing 22104 well-annotated promoters between these affinity 

score profiles and the CISSECTOR GLM, and calculated 

the average for each lag. TF affinity auto-correlation pro- 
files, calculated in the same way, were also calculated to as- 
sess how the spatial distribution of affinities might influence 
cross-correlation. 

RESULTS 

Design of the generalized linear model (GLM) underlying 

CISSECTOR 

In SuRE (Figure 1 A), millions of randomly sheared ge- 
nomic DNA fragments are cloned into a plasmid, upstream 

of a generic transcription unit that carries a barcode that is 
unique for each fragment. After a library sequencing proce- 
dure that maps each barcode to the corresponding genomic 
fragment, cultured cells are transfected with the library. 
Because the plasmid backbone does not contain a pro- 
moter, transcription of the downstream barcode-containing 

reporter is a direct measure of the promoter activity en- 
coded in the upstream genomic fragment. This is activity is 
measured by counting barcodes in reporter RNA isolated 

from the transfected cells. Because of the very large num- 
ber of r andom DNA fr agments that are assayed in paral- 
lel, autonomous transcriptional activity of each promoter 
is probed for a large number of distinct, partially overlap- 
ping fragments (Figure 1 B, top panel). Highly-expressed 

fragments tend to overlap each other (Figure 1 C), which 

suggests that some part of their shared sequence is respon- 
sible for driving this expression. However, many of these 
fragments extend up- and downstream of the segments that 
ar e appar ently shar ed by acti v e fragments, into regions that 
make no obvious contribution to expression. As a conse- 
quence, the location of individual highly-expressed frag- 
ments provides only a rough indication of which genomic 
segments are important for local transcriptional regulation. 

We implemented a regularized Poisson GLM approach, 
named CISSECTOR, that dissects the cis- regulatory influ- 
ences on reporter fragment expression by modeling the ex- 
pected expression count as the product of contributions 
from e v ery base-pair position contained within a genomic 
fra gment. CISSECTOR b uilds upon an earlier prototype 
model ( 4 ) that was used to dissect a small number of pro- 
moter regions, scaling this approach to the genome-wide 
scale. It models reporter expression in a gi v en cell type as 
Poisson-distributed counts, and uses elastic net penaliza- 
tion ( 17 ) to avoid over-fitting and address the high degree 
of collinearity in covariates corresponding to neighboring 

genomic positions. Penalized covariates correspond to short 
stretches of the genome (‘bins’) that are overlapped by some 
number of reporter fragments (Figure 1 B, shading). Once 
fit, the coefficient for each bin is divided equally among 

its composite genomic positions, resulting in an estimate of 
per-base-pair contributions to r eporter expr ession activity. 
To account for the directionality of expression, we fit our 
model separately for the Watson (forward or +) and Crick 
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Figure 1. Ov ervie w of CISSECTOR GLM methodology. ( A , B ) In the SuRE assay, genomes of one or more individuals are fr agmented, and r andom 

fragments of ∼300bp are cloned into a plasmid upstream of a barcode and a promoter-less reporter. Inverted PCR (iPCR) of the library is used to 
associate each barcode with its associated genomic fragment; iPCR counts also serve to assess the relati v e abundance of each barcode in the library. 
Reporter expression after transfection to a host cell line was assayed by counting barcodes in a cDNA library. For the GLM analysis, the genome was 
divided into bins of variable size based on an alignment of all fragments in the library. The relati v e e xpression le v el associated with each barcode was 
modeled in terms of multiplicati v e contributions from each genomic bin included in the associated genomic fragment. For each bin, a model coefficient 
was determined using a maximum-likelihood fit of the model. ( C ) Example promoter ( CCL2 ) showing iPCR-normalized SuRE cDNA counts. Each 
horizontal line r epr esents a bar coded fragment from its start to end on the x-axis. Only fragments that had the same orientation in the plasmid as the 
leading (+) strand of the genome are displayed. Panel underneath shows the coefficient of each genomic bin in the CISSECTOR model. ( D ) Cross- 
correlation between CISSECTOR coefficients and CAGE expression for 1kb regions surrounding 22104 well-annotated promoters. Lag shows base-pair 
shift in CAGE expression matrix relati v e to CISSECTOR coefficients. Correlation was smoothed using a running mean across a 25bp window. 

(re v erse or –) strands of the human genome. Additional un- 
penalized covariates were included in the model to account 
for technical biases, such as input library counts, and ele- 
ment length (see Materials and Methods). We also make use 
of library-specific unpenalized covariates when combining 

results from multiple libraries for the same cell type. 
Aside from the difference in scale, our model differs in a 

number of ways from the earlier prototype ( 4 ). Previously, 
fixed-width genomic bins were used, resulting in only par- 
tial overlap between a bin and any reporter fragments that 
either started or ended within that bin. This can result in 

the expression of reporter fragments influencing the esti- 
mated activity of nearby genomic positions with which they 

do not directl y overla p. These artifacts could be avoided by 

using a covariate for e v ery single genomic base-pair, but 
fitting such a model is extremely inefficient. To identify a 

smaller set of genomic bins that avoid the partial overlap is- 

sue, CISSECTOR takes advantage of the fact that the start- 
and end-points of all fragments in a gi v en MPRA library 

only correspond to a subset of all possible positions. Rather 
than using fixed-width bins, CISSECTOR allows variable- 
width bins, with each bin corresponding to the set of neigh- 
boring positions that are overlapped by an identical set of 
r eporter fragments (Figur e 1 B). The r esulting bin lengths 
can range in size from 1 bp to the length of whole reporter 
fragments. In the SuRE datasets used below, 99% of ge- 
nomic bins were 10bp or shorter, with a median bin length 

of 2. 
The output of the model fit is a genome wide coefficient 

track that allows the cis- regulatory structure of each pro- 
moter region to be dissected and interpreted in a biologi- 
cally intuiti v e manner (Figure 1 B, bottom panel): a positi v e 
coefficient for a gi v en bin indicates that the associated DNA 

sequence has an activating effect on the expression of the 
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promoter, while a negati v e coefficient indicates that it has a 

r epr essi v e effect. 

Fine-gr ained pr ediction of sequences that contribute to pro- 
moter activity 

Figure 1 C shows an example of raw SuRE data and the de- 
ri v ed GLM coefficient track from K562 cells, around the 
TSS of the CCL2 gene, which encodes a chemokine that is 
important in immune regulation ( 24 ). As might be expected, 
the coefficient track indicates that activating sequences are 
concentrated just upstream of the TSS, in this case up to 

position –352 bp. In addition, two elements around posi- 
tions –220 and –380 are predicted to harbor repressi v e ac- 
tivity. Thus, the GLM modeling clearly delineates the extent 
of the promoter region, and additionally identifies putati v e 
activating and r epr essive elements within it. Some r epr es- 
si v e elements and a few weakly activating sequences are also 

pr edicted downstr eam of the TSS, but these should be inter- 
preted with caution as they may reflect the presence of ele- 
ments that affect RNA stability rather than promoter activ- 
ity ( 4 ). Overall, this example illustrates how CISSECTOR 

gener ates a fine-gr ained prediction of the DNA elements 
that may contribute to promoter activity, inferred from the 
SuRE signals obtained with much larger DNA fragments. 
Additional examples of coefficient tracks will be discussed 

below. 
To show how the GLM coefficient profile relates to tran- 

scription initiation we cross-correlated the coefficient tracks 
with transcription initiation measured by CAGE (Figure 
1 D). We ran a cross correlation on 1kb regions surround- 
ing 22104 well-annotated promoters. The correlation func- 
tion peaks around position –50, indicating that the highest 
concentration of proximal dri v ers of promoter activity can 

be found around 50 bp upstream of sites of transcriptional 
initia tion, with cross-correla tion in excess of 0.01 in the re- 
gion between a pproximatel y –200 bp and + 50 bp. This is 
comparable to pr eviously r eported GLM implementation 

on the SuRE library presented in van Arensbergen et al. 
( 4 ).We also correlated the anti-sense GLM coefficient pro- 
file to the same CAGE signal which shows that the same 
elements around promoter regions are also capable of driv- 
ing anti-sense transcription, be it to a lesser degree. 

We observed that the CISSECTOR coefficient tracks 
of individual promoters often include narrow peaks and 

troughs (Figure 1 C, bottom panel; see also examples be- 
low), suggesting that the locations of functionally impor- 
tant sequences can be delineated with high genomic reso- 
lution. To gain confidence that these detailed features are 
indeed biolo gicall y meaningful, we compared GLM coef- 
ficient tracks with the predicted binding of TFs. Specifi- 
cally, we combined K562 ChIP-seq data ( 22 , 23 ) with TF 

binding motif models ( 20 , 21 ) to generate affinity profiles 
within known ChIP-seq peaks for a gi v en TF, then calcu- 
la ted the cross-correla tion between these af finity profiles 
and our K562 coefficient track on the 1 kb regions sur- 
rounding 22104 well-annotated promoters (Figure 2 A). If 
narrow peaks in the GLM coefficient tr ack gener ally coin- 
cide with TF binding sites, then the cross-correlation func- 
tion should be a narrow peak centered at lag = 0. Indeed, 
this is the case for se v eral TFs (cf. Figure 2 B, C, E, F). Other 

TFs, howe v er, show broader cross-correlation profiles (cf. 
Figure 2 B, D). A plausib le e xplanation for this ‘blurring’ 
was that the binding sites for these TFs tend to spatially 

cluster amongst themselves within promoter r egions. Ther e- 
fore, we also computed the auto-correlation functions for 
the binding affinity distribution of each TF, which may be 
expected to be broader if binding sites for the same TF tend 

to be spatially clustered, and narrow if individual binding 

sites occur independently. Indeed, we observe a broad TF 

binding af finity auto-correla tion profile whene v er the cross- 
correlation between the binding affinity and CISSECTOR 

coefficient showed a broad peak (Figure 2 D). We conclude 
that the fine-structure of our coefficient GLM profiles re- 
flects, at least in part, effects of local TF binding. 

Using GLM coefficient tracks to define optimal promoter 
fragments 

The GLM coef ficient a t any gi v en genomic position r epr e- 
sents the predicted change in log-expression if this position 

were to be included in the reporter construct. By summing 

these coefficients over a larger range, the autonomous pro- 
moter expression for any hypothetical fragment in the hu- 
man genome can be predicted, e v en if this fragment was 
not included in the original SuRE data. Making such pre- 
dictions for many start / end combinations yields a two- 
dimensional (2D) map of hypothetical reporter fragment 
expression. This is illustrated in Figure 3 A, which shows 
the pr edicted expr ession for e v ery hypothetical fragment up 

to 600 bp in a region 600 bp around the TSS of the gene 
HARS1 , which encodes a histidyl-tRNA synthetase. We 
limited this analysis to fragments up to 600 bp in length, be- 
cause the fragments assayed by SuRE were not larger than 

this size. The HARS1 promoter contains a specific subre- 
gion fr om appr oximately –335 to +30 bp that is predicted to 

optimally dri v e e xpr ession (Figur e 3 A, dashed lines). Thus, 
our 2D visualization of predicted fragment activities facili- 
tates the identification of promoter subregions that may be 
expected to give the highest promoter activity. 

Experimental validation of predicted fragment activities 

To further validate the predicti v e capability of our model, 
we set out to experimentally measure the activity of a large 
number of fragments that were not present in the original 
SuRE dataset. For this we used a separate, focused SuRE 

library that consisted of 680 thousand fragments selected 

from nine genomic loci, together covering 1.3 Mb and in- 
cluding 47 annotated promoters ( 4 ). This library is of much 

lower complexity than the full-genome libraries, resulting 

in much more precise quantification of relati v e reporter e x- 
pression for individual fragments. We compared the pre- 
dictions made by our genome-wide GLM model to these 
measur ed r eporter activities, r estricting the analysis to frag- 
ments that were not directly measured in the genome-wide 
SuRE data (and hence only pr edicted). This r esulted in an 

overall Pearson correlation of 0.78 ( P < 10 

−16 ) between 

measur ed and pr edicted activities (Figur e 3 B). This agr ee- 
ment was consistent when fragments belonging to each in- 
dividual promoter were considered separately (Figure 3 C 

mean Pearson correlation across 47 promoters: 0.76). We 
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Figure 2. GLM coefficient tracks correlate with TF binding patterns. ( A ) Cartoon r epr esentation of comparati v e analysis between TF-binding and CIS- 
SECTOR GLM coef ficients. Briefly: binding af finity was scanned across the subset of the genome covered by peaks identified in ChIP-seq data from the 
ENCODE project for the same TF. Subsequently cross-correlation was performed between affinities and CISSECTOR coefficients focusing on regions 1kb 
around annotated promoters. ( B ) Average cross-correlation between TF binding and GLM coefficient tracks (averaged over the Watson and Crick strand), 
across the subset of the genome covered by peaks identified in ChIP-seq data from the ENCODE project for the same TF. ( C–F ) Average cross-correlation 
plots (bottom panels) between GLM coefficients and the binding of selected TFs. For r efer ence, the average autocorr ela tion plots for the TF af finity profiles 
are shown in the top panels. Binding motifs of the TFs are depicted as logos. Lag of 0 was removed from the auto-correlation. 
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Figure 3. Predicting optimal promoter fragments from GLM coefficient tracks. ( A ) The trapezoid on top shows the prediction for each possible promoter 
fragment, up to 600bp in size, around the TSS of HARS1 , as deri v ed from the GLM coefficient track at the bottom. Each fragment is r epr esented by its 
center point along the x-axis and its size on the y-axis. The red dotted line shows the fragment that is predicted to gi v e rise to the highest reporter expression 
le v el. ( B , C ) SuRE analysis was performed on a B AC libr ary r epr esenting a small subset of the human genome (including HARS1 ), allowing for much 
higher coverage of the genes contained in the BACs than with the genome-wide library. To further reduce sampling noise, reads were grouped in terms of 
fragments starting and ending in the same respecti v e 25 bp bin. cDNA counts were normalized by iPCR counts, log-transformed, and then averaged within 
each such group of fragments. These values were compared to the predictions made by the genome-wide GLM model, either across all genes r epr esented 
in the BACs (B) or for each gene / TSS separately (C). 

conclude that, in general, the GLM model r eliably pr edicts 
the transcriptional activity of genomic fragments up to 600 

bp, e v en if they wer e not dir ectly assayed by SuRE. 

Promoter ar chitectur es ar e diverse and cell-type dependent 

Our genome-wide coefficient tracks and 2D visualization of 
expression across all possible promoter fragments can be 
used to explore the diversity of promoter ar chitectur es in 

the human genome. Examples are shown in Figure 4 , illus- 
trating a rich variety in pr edicted r egulatory element distri- 
bution from promoter to promoter. Some promoters have 

a very large extent (e.g. MYL12A, > 600 bp), while others 
encode almost all their activity in the first 100 bp upstream 

(e.g. GBAP1 ). For other promoters, such as BIR C5 , w hile a 

specific fragment of the promoter is predicted to maximize 
e xpression, either e xtending or reducing it is expected to re- 
duce activity. 

We also investigated differences in the coefficient pro- 
files between K562 and HepG2 cells. While fit separately, 
the SuRE data for these two cell types were generated with 

exactly the same fragment libraries, and ther efor e the co- 
efficient tracks could be compared directly. The modest 
genome-wide correlation between the respecti v e coefficient 
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Figure 4. Gallery of GLM coefficient tracks, showing the rich variation from gene to gene. The same r epr esentation is used as in Figure 3 . Gene names are 
indica ted a t the top left of each panel. 

tracks across both strands ( r = 0.39) suggests that there are 
substantial differences between the cell lines. To confirm 

that this correlation reflected cell type-specific differences, 
we split the dataset for each cell type by biological replicates 
(three in K562, two in HepG2) and gener ated separ ate fits 
with each replicate for the same subset of the genome. Cor- 
relations between replicates from the same cell type (mean 

r = 0.60) were consistently and significantly ( P = 0.01, t - 
test) higher than correlations between replicates from dif- 
ferent cell types (mean r = 0.39); for details, see Supple- 
mental Figure S2). Although strictly speaking our analysis 
could still be confounded by cell-type-specific differences in 

technological bias associated with the reporter assay, this 
result ne v ertheless suggests that CISSECTOR profiles cap- 
ture cell-type specific differences in regulatory activity. 

We also observed striking differences in the coefficient 
tracks for some individual promoters that are acti v e in both 

cell types. For example, IFITM2 has the same TSS in K562 

and HepG2 according to published CAGE data ( 25 ), yet 
the upstream GLM coefficient profile suggests that par- 
tially distinct sequence elements dri v e promoter acti vity in 

each context (Figure 5 A). Another striking example is the 
XRCC1 promoter (Figure 5 C). CAGE data for this pro- 
moter show that transcriptional initiation happens about 
100 bp further upstream in HepG2 than in K562 cells. Re- 
mar kab ly, the GLM coefficient profiles show two K562- 
specific patches of strongly negati v e values that coincide 
with the TSS position in HepG2 cells. This strongly suggests 
that two short r epr essi v e elements r epr ess transcription ini- 
tia tion a t this position in K562 cells, but not in HepG2 cells. 
Interestingly, for the BAX gene, CAGE data indicate that a 

secondary promoter 400–450 bp downstream of the TSS is 
only acti v e in HepG2 cells (Figure 5 B). The GLM profile in- 
dica tes tha t this is likely a ttributable to a stretch of ∼100 bp 

of sequence immediately upstream of this secondary pro- 
moter, possibly assisted by additional sequence elements 
that show positi v e coefficients in HepG2 cells onl y. Finall y, 
we found TMEM98 to have yet another striking configu- 
ration, in which for both cell lines the main stretch of se- 
quence predicted to be responsible for driving expression, 
lays downstream, rather than upstream of the TSS. 

A web tool for viewing promoter GLM data 

Together, the e xamples abov e illustrate how the GLM coef- 
ficient tracks and the deri v ed 2D visualization can help re- 
searchers to understand the ar chitectur e of individual pro- 
moters, to identify putati v e acti vating and r epr essi v e ele- 
ments, and to delineate the region of a promoter that is 
likely to harbor most of its regulatory sequences. To pro- 
vide easy access to these data, we implemented a simple web 

interface that is freely accessible at https://cissector.nki.nl . 
Users can visualize the coefficient tracks and 2D plots by 

entering a gene name , ENSEMBL ID , or genomic coordi- 
na tes. An automa tic link to the UCSC Genome Browser is 
provided for further integration with other genome anno- 
ta tion da ta. Interacti v e inspection of the 2D and coefficient 
tracks facilitates the identification of promoter subregions 
of inter est. Furthermor e, promoter activities of sets of ge- 
nomic fragments can be calculated in batch format. 

DISCUSSION 

Through GLM-based analysis of SuRE data we have de- 
ri v ed fine-grained genome-wide coefficient tracks that can 

be used to analyze and predict promoter activity across the 
human genome. These coefficient tracks and the deri v ed 2D 

plots highlight the subregions of each promoter that are 
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Figure 5. GLM coefficient tracks provide information about cell-type-specific gene regulation. For each gene / TSS, the two upper panels show the GLM 

coefficients tracks in the sense direction for K562 and HepG2 cells, respecti v ely. The two lower panels show endogenous transcriptional activity as assayed 
using CAGE, also in the sense orientation. Gene names are indicated at the top left of each panel. 
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Figure 6. Screenshot of CISSECTOR w e btool. Using this w e btool, researchers interested in a particular promoter region can easily browse the coefficient 
tracks and inspect our predictions of transcriptional activity for many different truncations of the same promoter regions. Firstly, a ‘Position of interest’ 
needs to be selected around which the triangle r epr esenta tion is genera ted and displayed. Subsequently, by either selecting a point in the triangle, selecting 
a region in the coefficient track, or by using the ‘Promoter fragment’ text box es, pr edictions can be made of a putati v e reporter construct with the selected 
sequence. In addition, there is a tab pane that allows the prediction of any list of genomic fragments (accepting BED-format). 

most likely to be relevant for its functioning, and provide 
clues about what the effect might be of introducing muta- 
tions at a specific loca tion. Our da ta-dri v en in silico pro- 
moter dissection can help focus wet-lab experimental efforts 
and generate new hypotheses for any promoter of interest. 
In addition, our method is able to predict expression for any 

hypothetical promoter fragment (up to a reasonable size, see 
below). 

CISSECTOR improves interpretability of SuRE data 

and helps reduce intrinsic noise due to low read counts 
for individual unique SuRE fragments. At any gi v en lo- 
cus, SuRE data will include reporter counts for many over- 
lapping fragments. This makes them a natural source of 
inf ormation f or predicting the boundaries and activity of 
promoter-associa ted regula tory elements. Howe v er, we had 

to address some technical challenges associated with ex- 
tr acting accur ate pr edictions from SuRE r esults: High- 
expression SuRE elements must contain functional pro- 
moter regions, but may be accompanied by flanking non- 
functional regions which could be removed without reduc- 
ing ov erall e xpression. The e xpression of individual ele- 
ments can also be highly variable due to transfection-related 

dr op-out, natural cell heter ogeneity, and other sources of 
experimental noise, making single-element counts fairly in- 
accurate predictors of reporter expression. Additionally, 
e v en high-cov er age SuRE libr aries cannot provide an ex- 
hausti v e surv ey of all possib le start / end combinations at a 

gi v en locus, making it difficult to predict the expression of 
unobserv ed elements. CISSECTOR ov ercomes these chal- 

lenges by summarizing information from all observed ele- 
ments in terms of a single genome-wide predicti v e coeffi- 
cient track. 

Although with some examples we tried to explain cell- 
type-specific differences in the GLM track between K562 

and HepG2 cells, we stress that the model we used is purely 

based on sequence geometry in terms of start and end po- 
sitions of fragments. It does not explicitly consider the base 
sequence of the DNA, and as such, its purpose is solely to 

locally deconvolve the SuRE data so as to achie v e precision 

on a spatial scale much smaller than the size of a typical 
SuRE fragment or the width of a typical SuRE coverage 
peak (Figure 1 ). The main benefit of our GLM tracks is that 
they are easily interpretable and allow one to deal with vary- 
ing fr agment sizes, cover age, and data sparsity in a coherent 
manner. 

A pproaches that explicitl y try to explain functional ge- 
nomics data such as ChIP-seq, ATAC-seq, DNA-seq or 
MPRA in terms of the underl ying DN A sequence, with the 
goal of predicting activity for unseen or mutated sequences, 
such as deep learning algorithms ( 26–29 ) address a different 
question. It will be interesting to see how well they perform 

on SuRE data, and how similar or different the predictions 
by the geometry-based and sequence-based methods would 

be when it comes to defining optimal promoters. 
The current SuRE-based GLM predictions also have lim- 

itations. Because the SuRE assay is based on transiently 

transfected plasmids, not all detected signals necessarily re- 
flect promoter activity in the native genomic context. For 
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example, some promoters are repressed by heter ochr omatin 

in their natural context, or substantially dependent on dis- 
tal enhancers. Ne v ertheless, the genome-wide correlation of 
about 0.5 between SuRE activity and endogenous promoter 
activity ( 4 ) suggests that GLM predictions will often be use- 
ful. Careful comparison of the GLM predictions with mea- 
sures of endogenous TSS activity (e.g. CAGE, PRO-cap or 
GRO-cap ( 30–32 ) can help interpret the results. The main 

value of our GLM predictions is that they can help iden- 
tify key regions of individual promoters, and generate con- 
crete hypotheses to focus labor-intensi v e mutagenesis e xper- 
iments. Furthermore, because the assayed fragments in the 
used SuRE datasets were generally < 500 bp in size ( 16 ), 
only coefficients within this distance from a known TSS are 
easily interpretable, with transcription initiating from the 
same start site, when present in the plasmid context. GLM 

signals further away may point to an ectopic site of tran- 
scription initiation in the plasmid context. 

In this study we focused on promoters. Howe v er, SuRE 

can also be used to study enhancers, because most en- 
hancers dri v e low-le v el e xpression, and this acti vity corre- 
lates with other measures of enhancer activity ( 4 ). Further- 
more, we expect that our GLM approach can be applied to 

data from MPRAs that specifically query enhancer activity, 
such as STARR-seq ( 33 ), as long as the fragment libraries 
are of sufficient complexity and genome coverage. We an- 
ticipa te tha t the number of cell types and species assayed 

by SuRE and other MPRAs will ra pidl y increase, offering 

opportunities to study cell-type and species-specific differ- 
ences and similarities in promoter and enhancer architec- 
tures. 

We discussed se v eral e xamples of how our understanding 

of promoters can be gained by inspecting the CISSECTOR 

coefficient tracks in the context of other genomic features. 
Howe v er, we are aware that our analyses just skim the sur- 
face of what might be learned from our GLM tracks. Expert 
domain knowledge is r equir ed to properly interpret them 

in the right context. To facilitate other r esear chers, we have 
designed a w e btool ( https://cissector.nki.nl ) using which re- 
sear chers inter ested in a particular promoter r egion can eas- 
ily browse the coefficient tracks and inspect our predictions 
of transcriptional activity for many dif ferent trunca tions of 
the same promoter regions (Figure 6 ). 

DA T A A V AILABILITY 

The SuRE data that were used for validation are avail- 
able under GEO accession GSE206935. Our code is avail- 
a ble at https://github.com/BussemakerLa b/CISSECTOR 

and https://doi.org/10.5281/zenodo.7750893 . 
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Supplementary Data are available at NAR Online. 
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