35 research outputs found

    Model Atmospheres for Irradiated Giant Stars: Implications for the Galactic Center

    Get PDF
    Irradiation of a stellar atmosphere by an external source (e.g. an AGN) changes its structure and therefore its spectrum. Using a state-of-the-art stellar atmosphere code, we calculate the infrared spectra of such irradiated and transformed stars. We show that the original spectrum of the star, which is dominated by molecular bands, changes dramatically when irradiated even by a low-luminosity AGN (LX=1033L_{\rm X} = 10^{33} erg s−1^{-1}), becoming dominated by atomic lines in absorption. We study the changes in the spectrum of low-mass carbon- and oxygen-rich giant stars as they are irradiated by a modest AGN, similar to the one at the Galactic center (GC). The resulting spectra are similar to those of the faintest S-cluster stars observed in the GC. The spectrum of a star irradiated by a much brighter AGN, like that powered by a tidally disrupted star, is very different from that of any star currently observed near the GC. For the first time we have discovered that the structure of the atmosphere of an irradiated giant changes dramatically and induces a double inversion layer. We show that irradiation at the current level can explain the observed trend of CO band intensities decreasing as a function of increasing proximity to Sg A∗A^{*}. This may indicate that (contrary to previous claims) there is no paucity of old giants in the GC, which coexist simultaneously with young massive stars.Comment: Submitted to ApJ; typo in name correcte

    A grid of MARCS model atmospheres for late-type stars I. Methods and general properties

    Full text link
    We have constructed a grid of about 10,000 spherically symmetric and plane-parallel models with the MARCS program, and make it available for public use. Parameter ranges are: Teff=2500 to 8000 K, log g =log(GM/R2)= -1 to 5 (cgs) with various masses and radii, [Me/H]=-5 to +1, with [Alpha/Fe] = 0.0 and 0.4 and different choices of C and N abundances to also represent stars of types R, S and N, and with microturbulence parameters from 1 to 5 km/s. We also list fluxes in approximately 108,000 wavelength points. Underlying assumptions in addition to 1D stratification include hydrostatic equilibrium, MLT convection and LTE. A number of general properties of the models are discussed, in relation to the effects of changing blanketing and sphericity. Models are compared with other available grids and excellent agreement is found with plane-parallel models of Castelli and Kurucz within the overlapping parameter range. Although there are departures from the spherically symmetric NextGen models, the agreement with more recent PHOENIX models is gratifying. The models of the grid show regularities, but some interesting departures from general patterns occur for the coolest models due to the molecular opacities. We have tested rules of thumb concerning effects of blanketing and sphericity and found them to often be astonishingly accurate. Some interesting new phenomena have been discovered, such as the intricate coupling between blanketing and sphericity, and the strong effects of carbon enhancement on metal-poor models. We give further details of models and comparisons with observations in subsequent papers.Comment: 20 pages, 20 figures, to be published in Astronomy & Astrophysic

    Genetic variation in \u3ci\u3eMiscanthus\u3c/i\u3e X \u3ci\u3egiganteus\u3c/i\u3e and the importance of estimating genetic distance thresholds for differentiating clones

    Get PDF
    Miscanthus x giganteus (Mxg) is an important bioenergy feedstock crop, however, genetic diversity among legacy cultivars may be severely constrained. Only one introduction from Japan to Denmark of this sterile, triploid, vegetatively propagated crop was recorded in the 1930s. We sought to determine if the Mxg cultivars in North America were all synonyms, and if they were derived from the European introduction. We used 64 nuclear and five chloroplast simple sequence repeat (SSR) markers to estimate genetic similarity for 27 Mxg accessions from North America, and compared them with six accessions from Europe, including the species’ type-specimen. A subset of accessions was also evaluated by restriction-site associated DNA sequencing (RAD-seq). In addition, we assessed the potential of new crosses to increase Mxg genetic diversity by comparing eight new triploid Mxg progeny grown from seed, along with samples of the parental species M. sacchariflorus and M. sinensis. Estimates of genotyping error rates were essential for distinguishing between experimental error and true genotypic differences among accessions. Given differences in estimated error rates and costs per marker for SSRs and RAD-seq, the former is currently more cost-effective for determining if two accessions are genetically identical. We concluded that all of the Mxg legacy cultivars were derived via vegetative propagation from a single genet. In contrast with the Mxg legacy cultivars, genetic similarity to the type-specimen of eight new triploid Mxg progeny ranged from 0.46 to 0.56. Though genetic diversity among the Mxg legacy cultivars is critically low, new crosses can provide much-needed variation to growers

    Physical properties of near-Earth asteroid (2102) Tantalus from multiwavelength observations

    Get PDF
    Between 2010 and 2017 we have collected new optical and radar observations of the potentially hazardous asteroid (2102) Tantalus from the ESO NTT and Danish telescopes at the La Silla Observatory and from the Arecibo planetary radar. The object appears to be nearly spherical, showing a low amplitude light-curve variation and limited large-scale features in the radar images. The spin-state is difficult to constrain with the available data; including a certain light-curve subset significantly changes the spin-state estimates, and the uncertainties on period determination are significant. Constraining any change in rotation rate was not possible, despite decades of observations. The convex lightcurve-inversion model, with rotational pole at λ = 210 ± 41○ and β = −30 ± 35○, is more flattened than the two models reconstructed by including radar observations: with prograde (λ = 36 ± 23○, β = 30 ± 15○), and with retrograde rotation mode (λ = 180 ± 24○, β = −30 ± 16○). Using data from WISE we were able to determine that the prograde model produces the best agreement in size determination between radar and thermophysical modelling. Radar measurements indicate possible variation in surface properties, suggesting one side might have lower radar albedo and be rougher at centimetre-to-decimetre scale than the other. However, further observations are needed to confirm this. Thermophysical analysis indicates a surface covered in fine-grained regolith, consistent with radar albedo and polarisation ratio measurements. Finally, geophysical investigation of the spin-stability of Tantalus shows that it could be exceeding its critical spin-rate via cohesive forces

    Genetic structure of Miscanthus sinensis and Miscanthus sacchariflorus in Japan indicates a gradient of bidirectional but asymmetric introgression

    Get PDF
    Unilateral introgression from diploids to tetraploids has been hypothesized to be an important evolutionary mechanism in plants. However, few examples have been definitively identified, perhaps because data of sufficient depth and breadth were difficult to obtain prior to the advent of affordable high-density genotyping. Throughout Japan, tetraploid Miscanthus sacchariflorus and diploid M. sinensis are common, and occasionally hybridize. In this study, we characterized 667 M. sinensis and 78 M. sacchariflorus genotypes from Japan using 20,704 SNPs and ten plastid microsatellites. Similarity of SNP genotypes between diploid and tetraploid M. sacchariflorus indicated that the tetraploids originated via autopolyploidy. Structure analysis indicated a gradient of introgression from diploid M. sinensis into tetraploid M. sacchariflorus throughout Japan; most tetraploids had some M. sinensis DNA. Among phenotypically M. sacchariflorus tetraploids, M. sinensis ancestry averaged 7% and ranged from 1-39%, with introgression greatest in southern Japan. Unexpectedly, rare (~1%) diploid M. sinensis individuals from northern Japan were found with 6-27% M. sacchariflorus ancestry. Population structure of M. sinensis in Japan included three groups, and was driven primarily by distance, and secondarily by geographic barriers such as mountains and straits. Miscanthus speciation is a complex and dynamic process. In contrast to limited introgression between diploid M. sacchariflorus and M. sinensis in northern China, selection for adaptation to a moderate maritime climate likely favored cross-ploidy introgressants in southern Japan. Our results will help guide the selection of Miscanthus accessions for the breeding of biomass cultivars.Office of Science - Biological and Environmental Research, U.S. Department of Energy [Project ID 0017582]Energy Biosciences InstituteOpe

    A multi-centre randomized controlled trial comparing arthroscopic osteochondroplasty and lavage with arthroscopic lavage alone on patient important outcomes and quality of life in the treatment of young adult (18-50) Femoroacetabular impingement

    Get PDF
    Background: Several cross-sectional studies have estimated that the prevalence of femoroacetabular impingement (FAI) ranges from 14-17% among asymptomatic young adults to almost 95% among competitive athletes. With FAI, there is abnormal contact between the proximal femur and the acetabulum, resulting in abnormal mechanics with terminal motion such as hip flexion and rotation. This condition results from bony anomalies of the acetabular rim (Pincer) and or femoral head/neck junction (CAM) and typically causes hip pain and decreased hip function. The development of hip pain potentially serves as an indicator for early cartilage and labral damage that may result in hip osteoarthritis. Although surgical correction of the misshaped bony anatomy and associated intra-articular soft tissue damage of the hip is thought to improve hip pain and alter the natural history of degenerative disease, the supportive evidence is based upon low quality observational studies. The Femoroacetabular Impingement RandomiSed controlled Trial (FIRST) compares outcomes following surgical correction of the impingement morphology (arthroscopic osteochondroplasty) with/without labral repair versus arthroscopic lavage of the hip joint in adults aged 18 to 50 diagnosed with FAI. Methods and design: FIRST is a multi-centre, randomized controlled trial with a sample size of 220 patients. Exclusion criteria include the presence of hip syndromes, previous surgery or trauma to the affected hip, and significant medical comorbidities. The primary outcome is pain and the secondary outcomes include patient function, quality of life, complications, and cost-effectiveness - all within one year of follow-up. Patients are stratified based on centre and impingement sub-type. Patients, outcome assessors, data analysts, and the Steering Committee are blinded to surgical allocation. Using an intention-to-treat approach, outcome analyses will be performed using an analysis of covariance and descriptive statistics. Discussion: Symptomatic FAI is associated with chronic hip pain, functional limitations, and secondary osteoarthritis. Therefore, optimizing treatment has the potential to improve the lives millions of young, active persons who are diagnosed with this condition. Few orthopaedic surgical trials have similar potential to shift the paradigm of care dramatically towards (or away) from surgical bony and soft tissue interventions.Peer reviewe

    Ejecta Evolution Following a Planned Impact into an Asteroid: The First Five Weeks

    Full text link
    The impact of the DART spacecraft into Dimorphos, moon of the asteroid Didymos, changed Dimorphos' orbit substantially, largely from the ejection of material. We present results from twelve Earth-based facilities involved in a world-wide campaign to monitor the brightness and morphology of the ejecta in the first 35 days after impact. After an initial brightening of ~1.4 magnitudes, we find consistent dimming rates of 0.11-0.12 magnitudes/day in the first week, and 0.08-0.09 magnitudes/day over the entire study period. The system returned to its pre-impact brightness 24.3-25.3 days after impact through the primary ejecta tail remained. The dimming paused briefly eight days after impact, near in time to the appearance of the second tail. This was likely due to a secondary release of material after re-impact of a boulder released in the initial impact, through movement of the primary ejecta through the aperture likely played a role.Comment: 16 pages, 5 Figures, accepted in the Astrophysical Journal Letters (ApJL) on October 16, 202

    Ejecta Evolution Following a Planned Impact into an Asteroid: The First Five Weeks

    Get PDF
    The impact of the Double Asteroid Redirection Test spacecraft into Dimorphos, moon of the asteroid Didymos, changed Dimorphos’s orbit substantially, largely from the ejection of material. We present results from 12 Earth-based facilities involved in a world-wide campaign to monitor the brightness and morphology of the ejecta in the first 35 days after impact. After an initial brightening of ∼1.4 mag, we find consistent dimming rates of 0.11–0.12 mag day−1 in the first week, and 0.08–0.09 mag day−1 over the entire study period. The system returned to its pre-impact brightness 24.3–25.3 days after impact though the primary ejecta tail remained. The dimming paused briefly eight days after impact, near in time to the appearance of the second tail. This was likely due to a secondary release of material after re-impact of a boulder released in the initial impact, though movement of the primary ejecta through the aperture likely played a role

    Optimizing the opacity sampling method

    No full text
    Modern computers allow solutions of the radiative transfer problem at a large number of frequencies during the iterative process of computing a detailed line-blanketed hydrostatic model atmosphere. However, the computing time increases approximately linearly with the number of frequency points. For computationally more complex and time-consuming problems, such as dust driven winds or pulsating AGB stars, it is therefore often not feasible to solve the radiative transfer problem for more than a single (i.e. mean or constant opacity) or a very modest number of frequencies. This paper analyzes how to optimize the selection of frequency points in particular when solving the radiative transfer problem at a very small number of points. We compute opacity sampled hydrostatic model atmospheres based on a large number of opacity sampling frequency points (of the order of 10.000), and successively reduce the number of frequencies in order to quantify the statistical error in the model structure introduced by a too coarse sampling. The results are compared to hydrostatic model atmospheres obtained by using other opacity approximations (Rosseland mean, straight means, constant opacity). We conclude that a considerable improvement in the accuracy of the model structure over such approximations can be achieved with a very modest number (20 - 50) of sampling frequencies, and give recommendations on how to choose the frequencies optimally

    Giants eating giants:mass loss and giant planets modifying the luminosity of the tip of the giant branch

    No full text
    During the red giant phase, stars loose mass at the highest rate since birth. The mass-loss rate is not fixed, but varies from star-to-star by up to 5\%, resulting in variations of the star's luminosity at the tip of the red giant branch (TRGB). Also, most stars, during this phase, engulf part of their planetary system, including their gas giant planets and possibly brown dwarfs. Gas giant planet masses range between 0.1 to 2\% of the host star mass. The engulfing of their gas giants planets can modify their luminosity at the TRGB, i.e. the point at which the He-core degeneracy is removed. We show that the increase in mass of the star by the engulfing of the gas giant planets only modifies the luminosity of a star at the TRGB by less than 0.1\%, while metallicity can modify the luminosity of a star at the TRGB by up to 0.5\%. However, the increase in turbulence of the convective envelope of the star, has a more dramatic effect, on the star's luminosity, which we estimate could be as large as 5\%. The effect is always in the direction to increase the turbulence and thus the mixing length which turns into a systematic decrease of the luminosity of the star at the TRGB. We find that the star-to-star variation of the mass-loss rate will dominate the variations in the luminosity of the TRGB with a contribution at the 5\% level. If the star-to-star variation is driven by environmental effects, the same effects can potentially create an environmentally-driven mean effect on the luminosity of the tip of the red giant branch of a galaxy. Engulfment of a brown dwarf will have a more dramatic effect. Finally, we touch upon how to infer the frequency, and identify the engulfment, of exoplanets in low-metallicity RGB stars through high resolution spectroscopy as well as how to quantify mass loss rate distributions from the morphology of the horizontal branch.Comment: matches accepted version to JCA
    corecore