11 research outputs found

    Increased Expression of Viral Sensor MDA5 in Pancreatic Islets and in Hormone-Negative Endocrine Cells in Recent Onset Type 1 Diabetic Donors

    Get PDF
    The interaction between genetic and environmental factors determines the development of type 1 diabetes (T1D). Some viruses are capable of infecting and damaging pancreatic β-cells, whose antiviral response could be modulated by specific viral RNA receptors and sensors such as melanoma differentiation associated gene 5 (MDA5), encoded by the IFIH1 gene. MDA5 has been shown to be involved in pro-inflammatory and immunoregulatory outcomes, thus determining the response of pancreatic islets to viral infections. Although the function of MDA5 has been previously well explored, a detailed immunohistochemical characterization of MDA5 in pancreatic tissues of nondiabetic and T1D donors is still missing. In the present study, we used multiplex immunofluorescence imaging analysis to characterize MDA5 expression and distribution in pancreatic tissues obtained from 22 organ donors (10 nondiabetic autoantibody-negative, 2 nondiabetic autoantibody-positive, 8 recent-onset, and 2 long-standing T1D). In nondiabetic control donors, MDA5 was expressed both in α- and β-cells. The colocalization rate imaging analysis showed that MDA5 was preferentially expressed in α-cells. In T1D donors, we observed an increased colocalization rate of MDA5-glucagon with respect to MDA5-insulin in comparison to nondiabetic controls; such increase was more pronounced in recent-onset with respect to long-standing T1D donors. Of note, an increased colocalization rate of MDA5-glucagon was found in insulin-deficient-islets (IDIs) with respect to insulin-containing-islets (ICIs). Strikingly, we detected the presence of MDA5-positive/hormone-negative endocrine islet-like clusters in T1D donors, presumably due to dedifferentiation or neogenesis phenomena. These clusters were identified exclusively in donors with recent disease onset and not in autoantibody-positive nondiabetic donors or donors with long-standing T1D. In conclusion, we showed that MDA5 is preferentially expressed in α-cells, and its expression is increased in recent-onset T1D donors. Finally, we observed that MDA5 may also characterize the phenotype of dedifferentiated or newly forming islet cells, thus opening to novel roles for MDA5 in pancreatic endocrine cells

    Pancreas Whole Tissue Transcriptomics Highlights the Role of the Exocrine Pancreas in Patients With Recently Diagnosed Type 1 Diabetes

    Get PDF
    Although type 1 diabetes (T1D) is primarily a disease of the pancreatic beta-cells, understanding of the disease-associated alterations in the whole pancreas could be important for the improved treatment or the prevention of the disease. We have characterized the whole-pancreas gene expression of patients with recently diagnosed T1D from the Diabetes Virus Detection (DiViD) study and non-diabetic controls. Furthermore, another parallel dataset of the whole pancreas and an additional dataset from the laser-captured pancreatic islets of the DiViD patients and non-diabetic organ donors were analyzed together with the original dataset to confirm the results and to get further insights into the potential disease-associated differences between the exocrine and the endocrine pancreas. First, higher expression of the core acinar cell genes, encoding for digestive enzymes, was detected in the whole pancreas of the DiViD patients when compared to non-diabetic controls. Second, In the pancreatic islets, upregulation of immune and inflammation related genes was observed in the DiViD patients when compared to non-diabetic controls, in line with earlier publications, while an opposite trend was observed for several immune and inflammation related genes at the whole pancreas tissue level. Third, strong downregulation of the regenerating gene family (REG) genes, linked to pancreatic islet growth and regeneration, was observed in the exocrine acinar cell dominated whole-pancreas data of the DiViD patients when compared with the non-diabetic controls. Fourth, analysis of unique features in the transcriptomes of each DiViD patient compared with the other DiViD patients, revealed elevated expression of central antiviral immune response genes in the whole-pancreas samples, but not in the pancreatic islets, of one DiViD patient. This difference in the extent of antiviral gene expression suggests different statuses of infection in the pancreas at the time of sampling between the DiViD patients, who were all enterovirus VP1+ in the islets by immunohistochemistry based on earlier studies. The observed features, indicating differences in the function, status and interplay between the exocrine and the endocrine pancreas of recent onset T1D patients, highlight the importance of studying both compartments for better understanding of the molecular mechanisms of T1D.publishedVersionPeer reviewe

    Pancreas Whole Tissue Transcriptomics Highlights the Role of the Exocrine Pancreas in Patients With Recently Diagnosed Type 1 Diabetes

    Get PDF
    Although type 1 diabetes (T1D) is primarily a disease of the pancreatic beta-cells, understanding of the disease-associated alterations in the whole pancreas could be important for the improved treatment or the prevention of the disease. We have characterized the whole-pancreas gene expression of patients with recently diagnosed T1D from the Diabetes Virus Detection (DiViD) study and non-diabetic controls. Furthermore, another parallel dataset of the whole pancreas and an additional dataset from the laser-captured pancreatic islets of the DiViD patients and non-diabetic organ donors were analyzed together with the original dataset to confirm the results and to get further insights into the potential disease-associated differences between the exocrine and the endocrine pancreas. First, higher expression of the core acinar cell genes, encoding for digestive enzymes, was detected in the whole pancreas of the DiViD patients when compared to non-diabetic controls. Second, In the pancreatic islets, upregulation of immune and inflammation related genes was observed in the DiViD patients when compared to non-diabetic controls, in line with earlier publications, while an opposite trend was observed for several immune and inflammation related genes at the whole pancreas tissue level. Third, strong downregulation of the regenerating gene family (REG) genes, linked to pancreatic islet growth and regeneration, was observed in the exocrine acinar cell dominated whole-pancreas data of the DiViD patients when compared with the non-diabetic controls. Fourth, analysis of unique features in the transcriptomes of each DiViD patient compared with the other DiViD patients, revealed elevated expression of central antiviral immune response genes in the whole-pancreas samples, but not in the pancreatic islets, of one DiViD patient. This difference in the extent of antiviral gene expression suggests different statuses of infection in the pancreas at the time of sampling between the DiViD patients, who were all enterovirus VP1+ in the islets by immunohistochemistry based on earlier studies. The observed features, indicating differences in the function, status and interplay between the exocrine and the endocrine pancreas of recent onset T1D patients, highlight the importance of studying both compartments for better understanding of the molecular mechanisms of T1D.</p

    Immune Transcriptome of Cells Infected with Enterovirus Strains Obtained from Cases of Autoimmune Thyroid Disease

    No full text
    Background: Hashimoto’s thyroiditis and Graves’ disease are autoimmune thyroid disorders (AITD) of unknown origin. Enterovirus (EV) infection of thyroid cells has been implicated as a possible initiator of cell damage and of organ-specific autoimmunity. We asked whether persistent infection of human epithelial cells with EV strains obtained from thyroid tissue of AITD patients could be associated with transcriptional changes capable of fostering immunopathology. Methods: EV isolates obtained from thyroid tissue of AITD cases were used to infect the AV3 epithelial cell line. AV3 cells incubated with a virus-free medium from thyroid tissue of subjects without evidence of thyroid autoimmunity were used as uninfected controls. Transcripts of immune-related genes were compared in infected vs. uninfected cells. Results: The EV genome and antigens were detected only in the cells exposed to AITD-derived virus isolates, not in control cells. Persistent EV infection, while suppressing transcription of several type I IFN and cytokine determinants, was associated with enhanced transcription of NFKB1/RELA, IFNAR1, JAK1/STAT1, i.e., the determinants that play key immunologic roles. Infection also led to upregulation of the CCL2 chemokine and the IL-18 pro-inflammatory interleukin. Conclusion: As in the case of EV strains obtained from autoimmune diabetes, results show that the EV strains that are present in the thyroid of AITD cases do repress IFN and cytokine pathways. JAK1/STAT1 upregulation supports activation of TLR pathways and aberrant T cell signaling. In the early phases of AITD, our results highlight the potential benefit of interventions aimed at blocking the viral infection and easing the inflammatory response

    Characterisation of the endocrine pancreas in type 1 diabetes : islet size is maintained but islet number is markedly reduced

    No full text
    Insulin deficiency in type 1 diabetes (T1D) is generally considered a consequence of immune-mediated specific beta-cell loss. Since healthy pancreatic islets consist of similar to 65% beta cells, this would lead to reduced islet size, while the number of islets per pancreas volume (islet density) would not be affected. In this study, we compared the islet density, size, and size distribution in biopsies from subjects with recent-onset or long-standing T1D, with that in matched non-diabetic subjects. The results presented show preserved islet size and islet size distribution, but a marked reduction in islet density in subjects with recent onset T1D compared with non-diabetic subjects. No further reduction in islet density occurred with increased disease duration. Insulin-negative islets in T1D subjects were dominated by glucagon-positive cells that often had lost the alpha-cell transcription factor ARX while instead expressing PDX1, normally only expressed in beta cells within the islets. Based on our findings, we propose that failure to establish a sufficient islet number to reach the beta-cell mass needed to cope with episodes of increased insulin demand contributes to T1D susceptibility. Exhaustion induced by relative lack of beta cells could then potentially drive beta-cell dedifferentiation to alpha-cells, explaining the preserved islet size observed in T1D compared to controls.Knut Dahl‐Jørgensen, Oskar Skog and Olle Korsgren share senior authorship. Peter Seiron and Anna Wiberg contributed equally to this work.</p

    Genetic predisposition in the 2′-5′A pathway in the development of type 1 diabetes:potential contribution to dysregulation of innate antiviral immunity

    No full text
    AIMS/HYPOTHESIS: The incidence of type 1 diabetes is increasing more rapidly than can be explained by genetic drift. Viruses may play an important role in the disease, as they seem to activate the 2′-5′-linked oligoadenylate (2′-5′A) pathway of the innate antiviral immune system. Our aim was to investigate this possibility. METHODS: Innate antiviral immune pathways were searched for type 1 diabetes-associated polymorphisms using genome-wide association study data. SNPs within ±250kb flanking regions of the transcription start site of 64 genes were examined. These pathways were also investigated for type 1 diabetes-associated RNA expression profiles using laser-dissected islets from two to five tissue sections per donor from the Diabetes Virus Detection (DiViD) study and the network of Pancreatic Organ Donors (nPOD). RESULTS: We found 27 novel SNPs in genes nominally associated with type 1 diabetes. Three of those SNPs were located upstream of the 2′-5′A pathway, namely SNP rs4767000 (p = 1.03 × 10(−9), OR 1.123), rs1034687 (p = 2.16 × 10(−7), OR 0.869) and rs739744 (p = 1.03 × 10(−9), OR 1.123). We also identified a large group of dysregulated islet genes in relation to type 1 diabetes, of which two were novel. The most aberrant genes were a group of IFN-stimulated genes. Of those, the following distinct pathways were targeted by the dysregulation (compared with the non-diabetic control group): OAS1 increased by 111% (p < 1.00 × 10(−4), 95% CI −0.43, −0.15); MX1 increased by 142% (p < 1.00 × 10(−4), 95% CI −0.52, −0.22); and ISG15 increased by 197% (p = 2.00 × 10(−4), 95% CI −0.68, −0.18). CONCLUSIONS/INTERPRETATION: We identified a genetic predisposition in the 2′-5′A pathway that potentially contributes to dysregulation of the innate antiviral immune system in type 1 diabetes. This study describes a potential role for the 2′-5′A pathway and other components of the innate antiviral immune system in beta cell autoimmunity. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains peer-reviewed but unedited supplementary material available at 10.1007/s00125-021-05469-5

    Characterisation of enterovirus RNA detected in the pancreas and other specimens of live patients with newly diagnosed type 1 diabetes in the DiViD study

    Get PDF
    Aims/hypothesis The Diabetes Virus Detection (DiViD) study is the first study to laparoscopically collect pancreatic tissue and purified pancreatic islets together with duodenal mucosa, serum, peripheral blood mononuclear cells (PBMCs) and stools from six live adult patients (age 24-35 years) with newly diagnosed type 1 diabetes. The presence of enterovirus (EV) in the pancreatic islets of these patients has previously been reported. Methods In the present study we used reverse transcription quantitative real-time PCR (RT-qPCR) and sequencing to characterise EV genomes present in different tissues to understand the nature of infection in these individuals. Results All six patients were found to be EV-positive by RT-qPCR in at least one of the tested sample types. Four patients were EV-positive in purified islet culture medium, three in PBMCs, one in duodenal biopsy and two in stool, while serum was EVnegative in all individuals. Sequencing the 5 untranslated region of these EVs suggested that all but one belonged to enterovirus B species. One patient was EV-positive in all these sample types except for serum. Sequence analysis revealed that the virus strain present in the isolated islets of this patient was different from the strain found in other sample types. None of the islet-resident viruses could be isolated using EV-permissive cell lines. Conclusions/interpretation EV RNA can be frequently detected in various tissues of patients with type 1 diabetes. At least in some patients, the EV strain in the pancreatic islets may represent a slowly replicating persisting virus.Funding Agencies|South-Eastern Norway Regional Health Authority; Novo Nordisk FoundationNovo Nordisk Foundation; Persistent Virus Infection in Diabetes Network (PEVNET) Study Group, the European Unions Seventh Framework Programme [FP7/2007-2013] [261441 PEVNET]; JDRF nPOD program; Sigrid Juselius FoundationSigrid Juselius Foundation; Diabetes Research Foundation in Finland; Academy of FinlandAcademy of FinlandEuropean Commission [288671]</p

    From clinicogenetic studies of maturity-onset diabetes of the young to unraveling complex mechanisms of glucokinase regulation.

    No full text
    Glucokinase functions as a glucose sensor in pancreatic beta-cells and regulates hepatic glucose metabolism. A total of 83 probands were referred for a diagnostic screening of mutations in the glucokinase (GCK) gene. We found 11 different mutations (V62A, G72R, L146R, A208T, M210K, Y215X, S263P, E339G, R377C, S453L, and IVS5 + 1G>C) in 14 probands. Functional characterization of recombinant glutathionyl S-transferase-G72R glucokinase showed slightly increased activity, whereas S263P and G264S had near-normal activity. The other point mutations were inactivating. S263P showed marked thermal instability, whereas the stability of G72R and G264S differed only slightly from that of wild type. G72R and M210K did not respond to an allosteric glucokinase activator (GKA) or the hepatic glucokinase regulatory protein (GKRP). Mutation analysis of the role of glycine at position 72 by substituting E, F, K, M, S, or Q showed that G is unique since all these mutants had very low or no activity and were refractory to GKRP and GKA. Structural analysis provided plausible explanations for the drug resistance of G72R and M210K. Our study provides further evidence that protein instability in combination with loss of control by a putative endogenous activator and GKRP could be involved in the development of hyperglycemia in maturity-onset diabetes of the young, type 2. Furthermore, based on data obtained on G264S, we propose that other and still unknown mechanisms participate in the regulation of glucokinase
    corecore