52 research outputs found

    EPIC 219388192 b - an inhabitant of the brown dwarf desert in the Ruprecht 147 open cluster

    Get PDF
    We report the discovery of EPIC 219388192 b, a transiting brown dwarf in a 5.3-day orbit around a member star of Ruprecht-147, the oldest nearby open cluster association, which was photometrically monitored by K2 during its Campaign 7. We combine the K2 time-series data with ground-based adaptive optics imaging and high resolution spectroscopy to rule out false positive scenarios and determine the main parameters of the system. EPIC 219388192 b has a radius of RbR_\mathrm{b}=0.937±0.0420.937\pm0.042~RJup\mathrm{R_{Jup}} and mass of MbM_\mathrm{b}=36.50±0.0936.50\pm0.09~MJup\mathrm{M_{Jup}}, yielding a mean density of 59.0±8.159.0\pm8.1~gcm3\mathrm{g\,cm^{-3}}. The host star is nearly a Solar twin with mass MM_\star=0.99±0.050.99\pm0.05~M\mathrm{M_{\odot}}, radius RR_\star=1.01±0.041.01\pm0.04~R\mathrm{R_{\odot}}, effective temperature Teff\mathrm{T_{eff}}=5850±855850\pm85~K and iron abundance [Fe/H]=0.03±0.080.03\pm0.08~dex. Its age, spectroscopic distance, and reddening are consistent with those of Ruprecht-147, corroborating its cluster membership. EPIC 219388192 b is the first brown dwarf with precise determinations of mass, radius and age, and serves as benchmark for evolutionary models in the sub-stellar regime.Comment: 13 pages, 11 figures, 4 tables, submitted to AAS Journal

    Three Small Planets Transiting a Hyades Star

    Get PDF
    We present the discovery of three small planets transiting K2-136 (LP 358 348, EPIC 247589423), a late K dwarf in the Hyades. The planets have orbital periods of 7.9757±0.00117.9757 \pm 0.0011, 17.306810.00036+0.0003417.30681^{+0.00034}_{-0.00036}, and 25.57150.0040+0.003825.5715^{+0.0038}_{-0.0040} days, and radii of 1.05±0.161.05 \pm 0.16, 3.14±0.363.14 \pm 0.36, and 1.550.21+0.241.55^{+0.24}_{-0.21} RR_\oplus, respectively. With an age of 600-800 Myr, these planets are some of the smallest and youngest transiting planets known. Due to the relatively bright (J=9.1) host star, the planets are compelling targets for future characterization via radial velocity mass measurements and transmission spectroscopy. As the first known star with multiple transiting planets in a cluster, the system should be helpful for testing theories of planet formation and migration.Comment: Accepted to The Astronomical Journa

    Exoplanets around Low-mass Stars Unveiled by K2

    Get PDF
    We present the detection and follow-up observations of planetary candidates around low-mass stars observed by the K2 mission. Based on light-curve analysis, adaptive-optics imaging, and optical spectroscopy at low and high resolution (including radial velocity measurements), we validate 16 planets around 12 low-mass stars observed during K2 campaigns 5-10. Among the 16 planets, 12 are newly validated, with orbital periods ranging from 0.96-33 days. For one of the planets (K2-151b) we present ground-based transit photometry, allowing us to refine the ephemerides. Combining our K2 M-dwarf planets together with the validated or confirmed planets found previously, we investigate the dependence of planet radius RpR_p on stellar insolation and metallicity [Fe/H]. We confirm that for periods P2P\lesssim 2 days, planets with a radius Rp2RR_p\gtrsim 2\,R_\oplus are less common than planets with a radius between 1-2R\,R_\oplus. We also see a hint of the "radius valley" between 1.5 and 2R\,R_\oplus that has been seen for close-in planets around FGK stars. These features in the radius/period distribution could be attributed to photoevaporation of planetary envelopes by high-energy photons from the host star, as they have for FGK stars. For the M dwarfs, though, the features are not as well defined, and we cannot rule out other explanations such as atmospheric loss from internal planetary heat sources, or truncation of the protoplanetary disk. There also appears to be a relation between planet size and metallicity: those few planets larger than about 3 RR_\oplus are found around the most metal-rich M dwarfs.Comment: 29 pages, 21 figures, 6 tables, Accepted in Astronomical Journa

    A new group of Palaeolithic painted hands from the southern Iberian Peninsula. Las Estrellas cave (Castellar de la Frontera, Cádiz)

    Get PDF
    This work presents a review of the rock art conserved at a site located in the autonomous community of Andalusia, known in the preceding literature as the Las Estrellas cave (Castellar de la Frontera, Cádiz). This is a large open-air rocky shelter, in which various schematic style pictographs were found, in the early years of this century. During a recent visit to the site, the existence of an important Palaeolithic figurative set was also noted, which includes representations of fauna and a small series of outlines of hands. This article deals with the generic analysis of the art catalogued in the cave up to the present moment, paying special attention to the set of the aforementioned Palaeolithic handprints, which have been documented using digital 3d technology. Similarly, its contextualization in Andalusian Palaeolithic art will be taken into account and a first chronological approximation of this interesting and varied figurative system will be made.Presentamos en este trabajo la revisión de las manifestaciones de arte rupestre conservadas en una estación localizada en la comunidad autónoma de Andalucía, conocida en la literatura precedente como cueva de Las Estrellas (Castellar de la Frontera, Cádiz). Se trata de un abrigo rocoso de grandes dimensiones, abierto al aire libre, en el que ya se había constatado, en los primeros años del presente siglo, la presencia de diversas pictografías de estilo esquemático. Durante una visita reciente al enclave se ha advertido, además, la existencia de un importante conjunto figurativo de cronología paleolítica que incluye representaciones de fauna y una pequeña serie de improntas de manos en negativo. Este artículo aborda el análisis genérico de las grafías catalogadas hasta el momento en la cavidad, atendiendo con especial detalle al conjunto de las citadas huellas de manos paleolíticas, que han sido documentadas usando tecnología digital 3d. De igual modo, se tendrán en cuenta su contextualización en el arte paleolítico andaluz y una primera aproximación cronológica a este interesante y variado complejo figurativo

    The transiting multi-planet system HD3167: a 5.7 MEarth Super-Earth and a 8.3 MEarth mini-Neptune

    Get PDF
    HD3167 is a bright (V=8.9 mag) K0V star observed by the NASA's K2 space mission during its Campaign 8. It has been recently found to host two small transiting planets, namely, HD3167b, an ultra short period (0.96 d) super-Earth, and HD3167c, a mini-Neptune on a relatively long-period orbit (29.85 d). Here we present an intensive radial velocity follow-up of HD3167 performed with the FIES@NOT, [email protected], and HARPS-N@TNG spectrographs. We revise the system parameters and determine radii, masses, and densities of the two transiting planets by combining the K2 photometry with our spectroscopic data. With a mass of 5.69+/-0.44 MEarth, radius of 1.574+/-0.054 REarth, and mean density of 8.00(+1.0)(-0.98) g/cm^3, HD3167b joins the small group of ultra-short period planets known to have a rocky terrestrial composition. HD3167c has a mass of 8.33 (+1.79)(-1.85) MEarth and a radius of 2.740(+0.106)(-0.100) REarth, yielding a mean density of 2.21(+0.56)(-0.53) g/cm^3, indicative of a planet with a composition comprising a solid core surrounded by a thick atmospheric envelope. The rather large pressure scale height (about 350 km) and the brightness of the host star make HD3167c an ideal target for atmospheric characterization via transmission spectroscopy across a broad range of wavelengths. We found evidence of additional signals in the radial velocity measurements but the currently available data set does not allow us to draw any firm conclusion on the origin of the observed variation.Comment: 18 pages, 11 figures, 5 table

    The K2-ESPRINT Project II: Spectroscopic follow-up of three exoplanet systems from Campaign 1 of K2

    Get PDF
    We report on Doppler observations of three transiting planet candidates that were detected during Campaign 1 of the K2 mission. The Doppler observations were conducted with FIES, HARPS-N, and HARPS. We measure the mass of EPIC 201546283b, and provide constraints and upper limits for EPIC 201295312b and EPIC 201577035b. EPIC 201546283b is a warm Neptune orbiting its host star in 6.77 days and has a radius of 4.45_(-0.33)^(+0.33)R_⊕ and a mass of 29.1_(-7.4)^(+7.5)M_⊕, which leads to a mean density of 1.80_(-0.55)^(+0.70) cm^(-3). EPIC 201295312b is smaller than Neptune with an orbital period of 5.66 days, a radius of 2.75_(-0.22^)(0.24)R_⊕, and we constrain the mass to be below 12 M_⊕ at 95% confidence. We also find a long-term trend indicative of another body in the system. EPIC 201577035b, which was previously confirmed as the planet K2-10b, is smaller than Neptune, orbiting its host star in 19.3 days, with a radius of 3.84_(-0.34)^(+0.35)R_⊕. We determine its mass to be 27_(-16)^(+17)M_⊕, with a 95% confidence upper limit at 57M_⊕, and a mean density of 2.6_(-1.6)^(+2.1)g cm^(-3). These measurements join the relatively small collection of planets smaller than Neptune with measurements or constraints of the mean density. Our code for performing K2 photometry and detecting planetary transits is now publicly available

    K2-60b and K2-107b. A Sub-Jovian and a Jovian Planet from the K2 Mission

    Get PDF
    We report the characterization and independent detection of K2-60b, as well as the detection and characterization of K2-107b, two transiting hot gaseous planets from the K2 space mission. We confirm the planetary nature of the two systems and determine their fundamental parameters combining the K2 time-series data with FIES @ NOT and HARPS-N @ TNG spectroscopic observations. K2-60b has a radius of 0.683 +/- 0.037 R-Jup and a mass of 0.426 +/- 0.037 M-Jup and orbits a G4 V star with an orbital period of 3.00267 +/- 0.00006 days. K2-107b has a radius of 1.44 +/- 0.15 R-Jup and a mass of 0.84 +/- 0.08 M-Jup and orbits an F9 IV star every 3.31392 +/- 0.00002 days. K2-60b is among the few planets at the edge of the so-called desert of short-period sub-Jovian planets. K2107b is a highly inflated Jovian planet orbiting an evolved star about to leave the main sequence

    THE K2-ESPRINT PROJECT. V. A SHORT-PERIOD GIANT PLANET ORBITING A SUBGIANT STAR

    Get PDF
    We report on the discovery and characterization of the transiting planet K2-39b (EPIC 206247743b). With an orbital period of 4.6 days, it is the shortest-period planet orbiting a subgiant star known to date. Such planets are rare, with only a handful of known cases. The reason for this is poorly understood but may reflect differences in planet occurrence around the relatively high-mass stars that have been surveyed, or may be the result of tidal destruction of such planets. K2-39 (EPIC 206247743) is an evolved star with a spectroscopically derived stellar radius and mass of 3.88 [subscript -0.42] [superscript +0.48] R [subscript ⊙] and 1.53[subscript-0.12] [superscript +0.13] M[subscript ⊙], respectively, and a very close-in transiting planet, with a/R [subscript asterisk]= 3.4 Radial velocity (RV) follow-up using the HARPS, FIES, and PFS instruments leads to a planetary mass of 50.3 [subscript -9.4] [superscript +9.7] M [subscript ⊙]. In combination with a radius measurement of 8.3 ± 1.1 R [subscript oplus], this results in a mean planetary density of 0.50 [subscript -0.17] [superscript +0.29] g cm [superscript -3]. We furthermore discover a long-term RV trend, which may be caused by a long-period planet or stellar companion. Because K2-39b has a short orbital period, its existence makes it seem unlikely that tidal destruction is wholly responsible for the differences in planet populations around subgiant and main-sequence stars. Future monitoring of the transits of this system may enable the detection of period decay and constrain the tidal dissipation rates of subgiant stars
    corecore