1,730 research outputs found
Reading Fiction Predicts People's Empathy
Reading fiction, in and of itself, predicts people’s empathy. People who read fiction tend to feel that they have more social support than those who read non- fiction.York's Knowledge Mobilization Unit provides services and funding for faculty, graduate students, and community organizations seeking to maximize the impact of academic research and expertise on public policy, social programming, and professional practice. It is supported by SSHRC and CIHR grants, and by the Office of the Vice-President Research & Innovation.
[email protected]
www.researchimpact.c
Web of Science - Scopus : searching the databases, main research indicators
Introduction about Web of Science and Scopus: searching both databases and how to obtain the main research indicators for journals and authors' scientific output (H-index, number of citations, Impact Factor and CiteScore). This presentation contains, also, some questions that users should be aware of before searching any database.Introducció a Web of Science i Scopus: cerca a les dues bases de dades i com obtenir els principals indicadors de recerca de les revistes i de la producció científica dels autors (Índex-H, nombre de citacions, Factor d'Impacte i CiteScore). Aquesta presentació conté, a més, alguns aspectes que cal tenir en compte durant la cerca a les bases de dades.Introducción a Web of Science i Scopus: búsqueda en las dos bases de datos y como obtener los principales indicadores de investigación de las revistas y de la producción científica de los autores (Índice-H, número de citaciones, Factor de Impacto i CiteScore). Esta presentación contiene, además, algunos aspectos que hay que tener en cuenta durante la búsqueda en las bases de datos
Recommended from our members
Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates.
The efficient production of biofuels from cellulosic feedstocks will require the efficient fermentation of the sugars in hydrolyzed plant material. Unfortunately, plant hydrolysates also contain many compounds that inhibit microbial growth and fermentation. We used DNA-barcoded mutant libraries to identify genes that are important for hydrolysate tolerance in both Zymomonas mobilis (44 genes) and Saccharomyces cerevisiae (99 genes). Overexpression of a Z. mobilis tolerance gene of unknown function (ZMO1875) improved its specific ethanol productivity 2.4-fold in the presence of miscanthus hydrolysate. However, a mixture of 37 hydrolysate-derived inhibitors was not sufficient to explain the fitness profile of plant hydrolysate. To deconstruct the fitness profile of hydrolysate, we profiled the 37 inhibitors against a library of Z. mobilis mutants and we modeled fitness in hydrolysate as a mixture of fitness in its components. By examining outliers in this model, we identified methylglyoxal as a previously unknown component of hydrolysate. Our work provides a general strategy to dissect how microbes respond to a complex chemical stress and should enable further engineering of hydrolysate tolerance
Administration time effect of dietary proanthocyanidins on the metabolome of Fischer 344 rats is sex- and diet-dependent
Proanthocyanidins (PAs) are one of the most commonly ingested polyphenols in the human diet, with a wide range of beneficial health effects. Remarkably, PAs have been reported to influence core and peripheral clock genes expression, and their effects may change in a time-of-day dependent manner. Therefore, the aim of this study was to investigate whether the capacity of PAs to modulate the metabolome is conditioned by the time-of-day in which these compounds are consumed in a diet- and sexdependent manner. To do this, a grape seed proanthocyanidin extract (GSPE) was administered to female and male Fischer 344 rats at ZT0 (in the morning) and ZT12 (at night) and the GSPE administration time effect was evaluated on clock genes expression, melatonin hormone and serum metabolite levels in a healthy and obesogenic context. The results showed an administration time effect of GSPE on the metabolome in a sex and diet-dependent manner. Specifically, there was an effect on amino acid, lipid and cholate metabolite levels that correlated with the central clock genes expression. Therefore, this study shows a strong influence of sex and diet on the PAs effects on the metabolome, modulated in turn by the time-of-day
The effects of inhaled corticosteroids on healthy airways
Background: The effects of inhaled corticosteroids (ICS) on healthy airways are poorly defined.
Objectives: To delineate the effects of ICS on gene expression in healthy airways, without confounding caused by changes in disease-related genes and disease-related alterations in ICS-responsiveness.
Methods: Randomised open-label bronchoscopy study of high dose ICS therapy in 30 healthy adult volunteers randomised 2:1 to i) fluticasone propionate 500 mcg bd daily or, ii) no treatment, for 4 weeks. Laboratory staff were blinded to allocation. Biopsies and brushings were analysed by immunohistochemistry, bulk RNA sequencing, DNA methylation array and metagenomics.
Results: ICS induced small between-group differences in blood and lamina propria eosinophil numbers, but not in other immunopathological features, blood neutrophils, FeNO, FEV1, microbiome or DNA methylation. ICS treatment upregulated 72 genes in brushings and 53 genes in biopsies, and downregulated 82 genes in brushings and 416 genes in biopsies. The most downregulated genes in both tissues were canonical markers of type-2 inflammation (FCER1A, CPA3, IL33, CLEC10A, SERPINB10 and CCR5), T cell-mediated adaptive immunity (TARP, TRBC1, TRBC2, PTPN22, TRAC, CD2, CD8A, HLA-DQB2, CD96, PTPN7), B cell immunity (CD20, immunoglobulin heavy and light chains), and innate immunity, including CD48, Hobit, RANTES, Langerin and GFI1. An IL-17-dependent gene signature was not upregulated by ICS.
Conclusions: In healthy airways, 4-week ICS exposure reduces gene expression related to both innate and adaptive immunity, and reduces markers of type-2 inflammation. This implies that homeostasis in health involves tonic type-2 signalling in the airway mucosa, which is exquisitely sensitive to ICS.
Registered at ClincialTrials.gov: NCT0247682
Alterations in Metabolome and Microbiome Associated with an Early Stress Stage in Male Wistar Rats: A Multi-Omics Approach
Stress disorders have dramatically increased in recent decades becoming the most prevalent psychiatric disorder in the United States and Europe. However, the diagnosis of stress disorders is currently based on symptom checklist and psychological questionnaires, thus making the identification of candidate biomarkers necessary to gain better insights into this pathology and its related metabolic alterations. Regarding the identification of potential biomarkers, omic profiling and metabolic footprint arise as promising approaches to recognize early biochemical changes in such disease and provide opportunities for the development of integrative candidate biomarkers. Here, we studied plasma and urine metabolites together with metagenomics in a 3 days Chronic Unpredictable Mild Stress (3d CUMS) animal approach that aims to focus on the early stress period of a well-established depression model. The multi-omics integration showed a profile composed by a signature of eight plasma metabolites, six urine metabolites and five microbes. Specifically, threonic acid, malic acid, alpha-ketoglutarate, succinic acid and cholesterol were proposed as key metabolites that could serve as key potential biomarkers in plasma metabolome of early stages of stress. Such findings targeted the threonic acid metabolism and the tricarboxylic acid (TCA) cycle as important pathways in early stress. Additionally, an increase in opportunistic microbes as virus of the Herpesvirales was observed in the microbiota as an effect of the primary stress stages. Our results provide an experimental biochemical characterization of the early stage of CUMS accompanied by a subsequent omic profiling and a metabolic footprinting that provide potential candidate biomarkers
Flaring Behavior of the Quasar 3C~454.3 across the Electromagnetic Spectrum
We analyze the behavior of the parsec-scale jet of the quasar 3C~454.3 during
pronounced flaring activity in 2005-2008. Three major disturbances propagated
down the jet along different trajectories with Lorentz factors 10. The
disturbances show a clear connection with millimeter-wave outbursts, in 2005
May/June, 2007 July, and 2007 December. High-amplitude optical events in the
-band light curve precede peaks of the millimeter-wave outbursts by 15-50
days. Each optical outburst is accompanied by an increase in X-ray activity. We
associate the optical outbursts with propagation of the superluminal knots and
derive the location of sites of energy dissipation in the form of radiation.
The most prominent and long-lasting of these, in 2005 May, occurred closer to
the black hole, while the outbursts with a shorter duration in 2005 Autumn and
in 2007 might be connected with the passage of a disturbance through the
millimeter-wave core of the jet. The optical outbursts, which coincide with the
passage of superluminal radio knots through the core, are accompanied by
systematic rotation of the position angle of optical linear polarization. Such
rotation appears to be a common feature during the early stages of flares in
blazars. We find correlations between optical variations and those at X-ray and
-ray energies. We conclude that the emergence of a superluminal knot
from the core yields a series of optical and high-energy outbursts, and that
the mm-wave core lies at the end of the jet's acceleration and collimation
zone.Comment: 57 pages, 23 figures, 8 tables (submitted to ApJ
Cerca d'informació en Fisioteràpia
L'objectiu d'aquests documents és proporcionar als alumnes de 4t del Grau de Fisioteràpia els coneixements bàsics per a l'ús eficient de les principals fonts d'informació en l'àrea de la Fisioteràpia
- …