28,451 research outputs found

    An astronomical search for evidence of new physics: Limits on gravity-induced birefringence from the magnetic white dwarf RE J0317-853

    Get PDF
    The coupling of the electromagnetic field directly with gravitational gauge fields leads to new physical effects that can be tested using astronomical data. Here we consider a particular case for closer scrutiny, a specific nonminimal coupling of torsion to electromagnetism, which enters into a metric-affine geometry of space-time. We show that under the assumption of this nonminimal coupling, spacetime is birefringent in the presence of such a gravitational field. This leads to the depolarization of light emitted from extended astrophysical sources. We use polarimetric data of the magnetic white dwarf REJ0317853{RE J0317-853} to set strong constraints on the essential coupling constant for this effect, giving k^2 \lsim (19 {m})^2 .Comment: Statements about Moffat's NGT modified. Accepted for publication in Phys.Rev.

    Far Infrared Variability of Sagittarius A*: 25.5 Hours of Monitoring with HerschelHerschel

    Get PDF
    Variable emission from Sgr~A*, the luminous counterpart to the super-massive black hole at the center of our Galaxy, arises from the innermost portions of the accretion flow. Better characterization of the variability is important for constraining models of the low-luminosity accretion mode powering Sgr~A*, and could further our ability to use variable emission as a probe of the strong gravitational potential in the vicinity of the 4×106M4\times10^{6}\mathrm{M}_{\odot} black hole. We use the \textit{Herschel} Spectral and Photometric Imaging Receiver (SPIRE) to monitor Sgr~A* at wavelengths that are difficult or impossible to observe from the ground. We find highly significant variations at 0.25, 0.35, and 0.5 mm, with temporal structure that is highly correlated across these wavelengths. While the variations correspond to <<1% changes in the total intensity in the \textit{Herschel} beam containing Sgr~A*, comparison to independent, simultaneous observations at 0.85 mm strongly supports the reality of the variations. The lowest point in the light curves, \sim0.5 Jy below the time-averaged flux density, places a lower bound on the emission of Sgr~A* at 0.25 mm, the first such constraint on the THz portion of the SED. The variability on few hour timescales in the SPIRE light curves is similar to that seen in historical 1.3 mm data, where the longest time series is available, but the distribution of variations in the sub-mm do not show a tail of large-amplitude variations seen at 1.3 mm. Simultaneous X-ray photometry from XMM-Newton shows no significant variation within our observing period, which may explain the lack of very large variations if X-ray and submillimeter flares are correlated.Comment: Accepted for publication in Ap

    Thermal correlators of anyons in two dimensions

    Full text link
    The anyon fields have trivial α\alpha-commutator for α\alpha not integer. For integer α\alpha the commutators become temperature-dependent operator valued distributions. The nn-point functions do not factorize as for quasifree states.Comment: 14 pages, LaTeX (misprints corrected, a reference added

    Electrostatics of ions inside the nanopores and trans-membrane channels

    Full text link
    A model of a finite cylindrical ion channel through a phospholipid membrane of width LL separating two electrolyte reservoirs is studied. Analytical solution of the Poisson equation is obtained for an arbitrary distribution of ions inside the trans-membrane pore. The solution is asymptotically exact in the limit of large ionic strength of electrolyte on the two sides of membrane. However, even for physiological concentrations of electrolyte, the electrostatic barrier sizes found using the theory are in excellent agreement with the numerical solution of the Poisson equation. The analytical solution is used to calculate the electrostatic potential energy profiles for pores containing charged protein residues. Availability of a semi-exact interionic potential should greatly facilitate the study of ionic transport through nanopores and ion channels

    Preparing projected entangled pair states on a quantum computer

    Get PDF
    We present a quantum algorithm to prepare injective PEPS on a quantum computer, a class of open tensor networks representing quantum states. The run-time of our algorithm scales polynomially with the inverse of the minimum condition number of the PEPS projectors and, essentially, with the inverse of the spectral gap of the PEPS' parent Hamiltonian.Comment: 5 pages, 1 figure. To be published in Physical Review Letters. Removed heuristics, refined run-time boun

    On the existence of infinitely many closed geodesics on orbifolds of revolution

    Get PDF
    Using the theory of geodesics on surfaces of revolution, we introduce the period function. We use this as our main tool in showing that any two-dimensional orbifold of revolution homeomorphic to S^2 must contain an infinite number of geometrically distinct closed geodesics. Since any such orbifold of revolution can be regarded as a topological two-sphere with metric singularities, we will have extended Bangert's theorem on the existence of infinitely many closed geodesics on any smooth Riemannian two-sphere. In addition, we give an example of a two-sphere cone-manifold of revolution which possesses a single closed geodesic, thus showing that Bangert's result does not hold in the wider class of closed surfaces with cone manifold structures.Comment: 21 pages, 4 figures; for a PDF version see http://www.calpoly.edu/~jborzell/Publications/publications.htm

    Analysis of the Hydrogen-rich Magnetic White Dwarfs in the SDSS

    Full text link
    We have calculated optical spectra of hydrogen-rich (DA) white dwarfs with magnetic field strengths between 1 MG and 1000 MG for temperatures between 7000 K and 50000 K. Through a least-squares minimization scheme with an evolutionary algorithm, we have analyzed the spectra of 114 magnetic DAs from the SDSS (95 previously published plus 14 newly discovered within SDSS, and five discovered by SEGUE). Since we were limited to a single spectrum for each object we used only centered magnetic dipoles or dipoles which were shifted along the magnetic dipole axis. We also statistically investigated the distribution of magnetic-field strengths and geometries of our sample.Comment: to appear in the proceedings of the 16th European Workshop on White Dwarfs, Barcelona, 200

    Fiduciary Discretion

    Get PDF
    Discretion is an important feature of all contractual relationships. In this Article, we rely on incomplete contract theory to motivate our study of discretion, with particular attention to fiduciary relationships. We make two contributions to the substantial literature on fiduciary law. First, we describe the role of fiduciary law as “boundary enforcement,” and we urge courts to honor the appropriate exercise of discretion by fiduciaries, even when the beneficiary or the judge might perceive a preferable action after the fact. Second, we answer the question, how should a court define the boundaries of fiduciary discretion? We observe that courts often define these boundaries by reference to industry customs and social norms. We also defend this as the most sensible and coherent approach to boundary enforcement

    Sex differences in exercise-induced diaphragmatic fatigue in endurance-trained athletes

    Get PDF
    There is evidence that female athletes may be more susceptible to exercise-induced arterial hypoxemia and expiratory flow limitation and have greater increases in operational lung volumes during exercise relative to men. These pulmonary limitations may ultimately lead to greater levels of diaphragmatic fatigue in women. Accordingly, the purpose of this study was to determine whether there are sex differences in the prevalence and severity of exercise-induced diaphragmatic fatigue in 38 healthy endurance-trained men (n = 19; maximal aerobic capacity = 64.0 ± 1.9 ml·kg–1·min–1) and women (n = 19; maximal aerobic capacity = 57.1 ± 1.5 ml·kg–1·min–1). Transdiaphragmatic pressure (Pdi) was calculated as the difference between gastric and esophageal pressures. Inspiratory pressure-time products of the diaphragm and esophagus were calculated as the product of breathing frequency and the Pdi and esophageal pressure time integrals, respectively. Cervical magnetic stimulation was used to measure potentiated Pdi twitches (Pdi,tw) before and 10, 30, and 60 min after a constant-load cycling test performed at 90% of peak work rate until exhaustion. Diaphragm fatigue was considered present if there was a 15% reduction in Pdi,tw after exercise. Diaphragm fatigue occurred in 11 of 19 men (58%) and 8 of 19 women (42%). The percent drop in Pdi,tw at 10, 30, and 60 min after exercise in men (n = 11) was 30.6 ± 2.3, 20.7 ± 3.2, and 13.3 ± 4.5%, respectively, whereas results in women (n = 8) were 21.0 ± 2.1, 11.6 ± 2.9, and 9.7 ± 4.2%, respectively, with sex differences occurring at 10 and 30 min (P < 0.05). Men continued to have a reduced contribution of the diaphragm to total inspiratory force output (pressure-time product of the diaphragm/pressure-time product of the esophagus) during exercise, whereas diaphragmatic contribution in women changed very little over time. The findings from this study point to a female diaphragm that is more resistant to fatigue relative to their male counterparts

    Comprehensive data infrastructure for plant bioinformatics

    Get PDF
    The iPlant Collaborative is a 5-year, National Science Foundation-funded effort to develop cyberinfrastructure to address a series of grand challenges in plant science. The second of these grand challenges is the Genotype-to- Phenotype project, which seeks to provide tools, in the form of a web-based Discovery Environment, for understanding the developmental process from DNA to a full-grown plant. Addressing this challenge requires the integration of multiple data types that may be stored in multiple formats, with varying levels of standardization. Providing for reproducibility requires that detailed information documenting the experimental provenance of data, and the computational transformations applied to data once it is brought into the iPlant environment. Handling the large quantities of data involved in high-throughput sequencing and other experimental sources of bioinformatics data requires a robust infrastructure for storing and reusing large data objects. We describe the currently planned workflows to be developed for the Genotype-to-Phenotype discovery environment, the data types and formats that must be imported and manipulated within the environment, and we describe the data model that has been developed to express and exchange data within the Discovery Environment, along with the provenance model defined for capturing experimental source and digital transformation descriptions. Capabilities for interaction with reference databases are addressed, focusing not just on the ability to retrieve data from such data sources, but on the ability to use the iPlant Discovery Environment to further populate these important resources. Future activities and the challenges they will present to the data infrastructure of the iPlant Collaborative are also described. © 2010 IEEE
    corecore