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Abstract. Using the theory of geodesics on surfaces of revolution, we in
troduce the period function. We use this as our main tool in showing that 
any two-dimensional orbifold of revolution homeomorphic to S2 must contain 
an infinite number of geometrically distinct closed geodesics. Since any such 
orbifold of revolution can be regarded as a topological two-sphere with met
ric singularities, we will have extended Bangert’s theorem on the existence of 
infinitely many closed geodesics on any smooth Riemannian two-sphere. In ad
dition, we give an example of a two-sphere cone-manifold of revolution which 
possesses a single closed geodesic, thus showing that Bangert’s result does not 
hold in the wider class of closed surfaces with cone manifold structures. 

1. Introduction 

In this paper, we study closed geodesics on surfaces of revolution with certain 
types of metric singularities. In particular, we are interested in closed (compact, 
without boundary) surfaces of revolution that are Riemannian 2-orbifolds. Loosely 
speaking, an 2-orbifold is modeled locally by convex Riemannian surfaces modulo 
finite groups of isometries acting with possible fixed points. This means that a 
neighborhood of each point p of such an orbifold is isometric to a Riemannian 
quotient Up/Γp where Up is a convex Riemannian surface diffeomorphic to R2, and  
Γp is a finite group of isometries acting effectively on Up. Every Riemannian surface 
is trivially an orbifold, with each Γp being the trivial group. The reader interested 
in more background on orbifolds should consult [4], Thurston’s classic [16], or the 
more recent textbook [14]. For the purposes of this paper, however, we will only 
need to apply a simple explicit criterion to determine whether a closed surface of 
revolution is a 2-orbifold (see section 7). 

The existence of closed geodesics on Riemannian manifolds has a long and storied 
past dating back to Poincaré [2]. It seems that not much has been done on the 
existence of closed geodesics in singular spaces. The existence of at least one closed 
geodesic on a compact 2-orbifold was shown in [7] and closed geodesics in orbifolds 
of higher dimensions have recently been studied in [10]. The paper [11] studies the 
issue of closed geodesics in spaces with incomplete metrics. The relevance here is 
that a complete Riemannian orbifold with singular set removed is a Riemannian 
manifold with incomplete metric and it is known [5] that closed geodesics in a 
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complete Riemannian orbifold may not pass through the singular set, unless they 
are entirely contained within it. 

Here we are interested in the question of the existence of infinitely many closed 
geodesics. In [1], Bangert used the work of Franks [9] to show that every smooth 
Riemannian S2 has infinitely many closed geodesics. For orbifolds with S2 as 
the underlying topological space, the existence of an infinity of closed geodesics 
is an open question. In the general category of closed surfaces of revolution with 
singular points (which have underlying topological space S2), one may construct 
examples with exactly one closed geodesic (see example 8.2), showing that ana
logue of Bangert’s result is false in this category. We call such a surface void. A  
spherical 2-orbifold of revolution is a closed two-dimensional surface of revolution 
homeomorphic to S2 that satisfies a certain special orbifold condition at its north 
and south poles. It is natural to ask whether void orbifolds of revolution exist. In 
resolving this question we extend Bangert’s result by proving that 

Theorem 1.1. Every spherical 2-orbifold of revolution has infinitely many closed 
geodesics. 

Since we are dealing only with surfaces of revolution, our techniques are relatively 
elementary. We begin by recalling the basic theory about surfaces of revolution and 
their geodesics, most of which can be found in [8], [12], or [13]. 

2. Basic Theory 

In what follows the term smooth function will refer to a function of class C∞ . 
In fact, C2 is sufficient for our needs. 

Definition 2.1. Let α : [uN , uS] → R2 be a simple (no self intersections) smooth 
plane curve α(u) =  (g(u), h(u)) where g and h are smooth functions on the interval 
[uN , uS ], with  h ≥ 0, and  h(u) =  0  if and only if u = uN or u = uS . A  spherical 
surface of revolution M is a surface embedded isometrical ly in R3 that admits a 
parametrization x : [uN , uS] × R → M of the form 

x(u, v) =  (g(u), h(u) cos  v, h(u) sin  v), 

That is, M is the surface of revolution obtained by rotating α about the x-axis. The 
curve α wil l be cal led the profile curve. 

Note that a spherical surface of revolution M is necessarily homeomorphic to 
S2 and that by definition the sets N = x(uN , v) and  S = x(uS , v) for  v ∈ R 
reduce to single points which will be referred to as the north and south poles of M . 
Metric singularities may only occur at these two points. M is smooth everywhere 
else. We also do not require that the function g be monotone. Throughout this 
paper all surfaces of revolution will be assumed spherical as in definition 2.1 even 
though much of the classical theory we review applies equally well to any surface 
of revolution. 

Rotation about the x-axis in R3 descends to a natural S1-action S1 × M → M 
on M by isometries: 

iθ(e , (x, y, z)) → (x, y cos θ − z sin θ, y sin θ + z cos θ). 

This action is free except at the north and south poles which remain fixed. 
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For a surface of revolution M , a simple computation gives the coefficients of the 
first fundamental form or metric tensor (subscripts denote partial derivatives): 

E = xu · xu = [g1(u)]2 + [h1(u)]2, F  = xu · xv = 0  and  G = xv · xv = h2(u), 

so that the metric (away from any singular point) is ( )
ds2 = [g1(u)]2 + [h1(u)]2 du2 + h2(u)dv2 . 

Note that the parametrization is orthogonal (F = 0) and  that  Ev = Gv = 0.  
Surfaces given by parametrizations with these properties are said to be u-Clairaut. 

For any u-Clairaut surface, and hence any surface of revolution, the geodesic 
equations reduce to 

11 Eu 12 Gu 12(2.1) u + u − v = 0  
2E 2E 

11 Gu 1(2.2) v + u v1 = 0. 
G 

A curve  γ(t) =  x(u(t), v(t)) on M is a geodesic if and only if the above equations 
are satisfied by the coordinate functions u and v of γ. Also, a geodesic satisfying 
these equations must be parametrized proportional to arc length and hence has 
constant speed. In particular, we may assume that γ has unit speed. That is, 
lγ1l = Eu12 + Gv12 ≡ 1. The existence and uniqueness theorem for solutions of 
ordinary differential equations implies that, given a point in p in M and a vector 
ξ in TpM , the tangent plane to M at p, there is a unique geodesic γ satisfying 
γ(0) = p and γ1(0) = ξ. 

We now recall two important classes of geodesics on surfaces of revolution. 

Example 2.2. A unit speed curve γ(t) =  x(u(t), v(t)) with v(t) ≡ v0, a  constant,  
is a u-parameter curve or meridional arc. Such curves are always geodesics. To 

1see this, note that v = v11 ≡ 0, so equation (2.2) is satisfied trivially. The unit 
12speed relation is, in this case, Eu12 

= 1,  so  u = 1/E. Differentiating each side 
and dividing by 2u1 gives 

1 1

11 12Euu + Evv Eu Eu 
u = − = − = − u ,

2u1E2 2E2 2E 
which is equivalent to (2.1), since v1 ≡ 0. We will use the term meridian for those 
meridional arcs that join N to S. 

Example 2.3. A unit speed curve γ(t) =  x(u(t), v(t)) with u(t) ≡ u0 ∈ (uN , uS), 
a constant, is a v-parameter curve or paral lel arc. For a parallel arc we have 
u1 = u11 ≡ 0 and the unit speed relation Gv12 = 1. Differentiating the unit speed 

11 − 1relation yields v = 2 Gv /G2 = 0  since  G = h(u)2 depends only on u. Thus  
12(2.2) is satisfied. Equation (2.1) reduces to Guv = 0. Hence parallel arcs are 

geodesic precisely when Gu(u0) = 0, or equivalently, h1(u0) = 0. We will use the 
term paral lel for those parallel arcs which are entire circles. 

For the remainder of the paper we will assume all geodesics come with unit speed 
parametrizations. 

The main classical tool used to get qualitative information about geodesics on 
surfaces of revolution is the Clairaut relation, which we present now. Let γ(t) be a  

1 1geodesic on M . Then  γ1 = u xu + v xv . If  there  exists  t0 with v1(t0) = 0, then the 
uniqueness of geodesics implies that γ must be a meridional arc as γ1 is parallel to 
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1xu at t0. As  a  result  v cannot change sign, and we may assume, without loss of 
generality that v1(t) ≥ 0. In fact, v1(t) > 0 unless γ is a meridional arc. 

Let ϕγ (t) =  ∠(γ1 , xu) be the angle between γ1 and xu at time t. Since  the  
surface parametrization x and γ are smooth, ϕγ (t) is a smooth function that takes 
its values in the interval [0, π]. From the discussion above we see that ϕγ (t) ∈ (0, π) 
for all t if and only if γ is not a meridional arc. Now consider the quantity cγ = Gv1 

along a geodesic γ. Then  
1 1 1 1 c = Gv11 + (Guu + Gvv 1)v = Gv11 + Guu v 1 = 0γ 

where the second equality follows since Gv = 0 and the last equality follows from 
the second geodesic equation (2.2). Thus the quantity cγ is constant along geodesic 
paths. Comparing the two expressions for γ1 · xv: 

γ1 1 1 · xv = (u xu + v xv) · xv = Gv1 = cγ G ) √π 
γ1 · xv = lγ1l lxvl cos − ϕγ = G sin ϕγ

2
 
yields the Clairaut relation:
 

Proposition 2.4. If cγ (t) =  G(t)v1(t) along a geodesic γ(t), then the quantity  
(2.3) cγ (t) = G(t) sin  ϕγ (t) =  h(u(t)) sin ϕγ (t) 

is constant. 

The constant cγ is called the slant of γ. Since  0  ≤ sin ϕγ (t) ≤ 1 for all t we must 
have that h(u(t)) ≥ cγ for all t. That  is,  γ is must lie entirely in the region of the 
surface M where h(u) ≥ cγ . 

Corollary 2.5. For a spherical surface of revolution, a geodesic γ with an endpoint 
at either pole must be a meridional arc. 

Proof. Since γ has an endpoint at a pole assume for concreteness that γ(a) =  N and 
that γ is defined over an interval [a, b]. Let tn → a be a sequence of real numbers 
tn ∈ (a, b) converging  to  a. Then  h(u(tn)) → h(u(a)) = 0, whence cγ (tn) → 0. By 
proposition 2.4, cγ (t) ≡ 0, which implies that sin ϕγ (t) ≡ 0. Thus, γ is a meridional 
arc. D 

Corollary 2.6. If γ is not a meridional arc, then γ cannot pass through a pole 
of M . Thus, non-meridional geodesics γ have a unique extension to a unit speed 
geodesic γ̂ : R → M . 

Proof. This follows from corollary 2.5 and the existence and uniqueness theorem 
for geodesics. D 

3. Qualitative Theory and a Classification of Geodesics 

In light of corollary 2.6 we will now assume that all non-meridional geodesics 
will be defined on R, and meridional arcs are extended to meridians. 

Motivated by the Clairaut relation we define, for c >  0, the super-level sets 

M c = {p ∈ M | if p = x(u, v), then h(u) > c} 

Points of M c will be referred to as points of M with h(u) > c  for convenience. 
M c may have several connected components M(

c 
j), but it is always true that the 

boundary of any such component ∂M(
c 
j) = ρ0 ∪ ρ1 where ρi are parallels ρi : t → 
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x(ui, t) with  h(ui) =  c for i = 0, 1. Note also that if c is a local minimum value 
of h(u) then  c >  0 and  the  closure  M c is a proper subset of {p ∈ M | if p = 
x(u, v), then h(u) ≥ c}. 

(j) 

The qualitative behavior of non-meridional geodesics given next is key to our 
analysis. 

Proposition 3.1. Suppose a geodesic γ(t) =  x(u(t), v(t)) on a spherical surface 
of revolution M is tangent at t = t0 to a non-geodesic parallel ρ0 : t → x(u0, t) 
of M . Then  γ is constrained to lie in the connected component Mγ of M cγ which 
contains γ. The boundary ∂Mγ = ρ0 ∪ ρ1 where ρ1 : t → x(u1, t) is a parallel of M 
with h(u1) =  cγ . Moreover, γ either oscillates between the parallels ρi intersecting 
them tangentially or γ spirals asymptotically to ρ1 which is necessarily a geodesic 
paral lel. 

Proof. If γ is tangent at t = t0 to a non-geodesic parallel ρ0, then  u(t0) =  u0 and 
γ1(t0) is parallel to xv . Thus,  ϕγ (t0) =  π/2 which implies cγ = h(u(t0)) = h(u0). 
Thus, by the Clairaut relation we may then conclude that the entire geodesic γ 
lies in a region of M that corresponds to points where the profile curve is ≥ cγ . 
Since γ is not a parallel, (otherwise, γ would have to coincide with ρ0 which is 
not geodesic), h(u(t)) > cγ for some t ∈ R. Thus,  γ is a subset of a connected 
component Mγ of M cγ . Since  ρ0 is non-geodesic, u0 is not a critical point of h and 
thus h is monotone in a neighborhood of u = u0. The Clairaut relation then implies 
that γ lies on one side of ρ0. That  is,  for  all  t, u(t) ∈ (uN , u0] or  u(t) ∈ [u0, uS). 
This shows that ρ0 ⊂ ∂Mγ and that intersections of γ with ρ0 are tangential. 

Without loss of generality, we may assume that u(t) ∈ [u0, uS ). Let u1 ∈ (u0, uS) 
be the smallest number such that h(u1) =  cγ . Let  ρ1 : t → x(u1, t) be the corre
sponding parallel. Define b = supt∈R u(t). 

If there is a tb such that u(tb) =  b, then  u1(tb) =  0.  Thus,  γ is parallel to xv at tb 

and hence cγ = h(b). By the choice of u1, we  must  have  b = u1 and thus, γ∩ρ1  .= ∅
As before, we may conclude that ρ1 is non-geodesic, all intersections are tangential, 
and γ lies on one side of ρ1. In particular, the set {u(t) | t ∈ R} = [u0, u1] and  
γ oscillates back and forth between the two parallels ρ0 and ρ1 which form the 
boundary ∂Mγ . 

On the other hand, if no such tb exists, then limt→∞ u(t) =  b and γ is asymptotic 
to the parallel at u = b. Since  γ is geodesic, this implies that the parallel ρb at 
u = b is geodesic with slant = h(b). By taking a limits we conclude that [ cρb ] 

1cγ = limt→∞ h(u(t)) sin ∠(γ1(t),xu) = h(b) sin  ∠(ρb,xu) =  h(b). By the choice of 
u1 we conclude that b = u1 and that ρb = ρ1. In particular, in this case, γ spirals 
asymptotically to a geodesic parallel ρ1 and ∂Mγ = ρ0 ∪ ρ1. D 

Geodesics which exhibit the oscillating behavior of proposition 3.1 will be called 
oscillating geodesics and those with asymptotic behavior will be called asymptotic 
geodesics. There is actually one last type of geodesic, called a bi-asymptotic geo
desic. This is a geodesic that spirals into a geodesic parallel as t → −∞ and another 
geodesic parallel as t → ∞. The existence of bi-asymptotic geodesics will be con
sidered in proposition 3.2 where we consider conditions that imply the existence of 
(bi)-asymptotic geodesics. 

Proposition 3.2. Let α = (g, h) :  [uN , uS ] → R2 be the profile curve of M . Then  
ΓM contains an asymptotic geodesic if and only if h has a critical point in the 
interval (uN , uS) that is not a local maximum. 
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Proof. Suppose h has a critical point at u = u0 that is not a local maximum. 
Without loss of generality, we may assume there is u1 ∈ h−1(h(u0)) such that the 
open interval (u0, u1) ⊂ {u ∈ (uN , uS ) | h(u) > h(u0)}. 

If h1(u1) = 0 then the corresponding parallel at u1 is non-geodesic and by propo
sition 3.1 there is a geodesic γ through x(u1, 0) and parallel to xv (u1, 0) so that γ 
is asymptotic to the parallel at u0. 

On	 the other hand, if h1(u1) = 0, then pick a point û ∈ (u0, u1). Since ( )
h(u0)

h(u0) < h(û) we can find ϕ̂ ∈ (0, π/2) with ϕ̂ = arcsin  . Now,  let  γ 
h(û) 

be the geodesic with γ(0) = x(û, 0) and with ∠(γ1(0),xu) =  ̂ϕ. Then the slant of γ, 
cγ = h(û) sin  ̂ϕ = h(u0). By proposition 3.1, we may conclude that γ is asymptotic 
to the geodesic parallels at u0 and u1. In  this  case,  γ is bi-asymptotic. D 

We have shown that a geodesic on spherical surface of revolution is either a 
meridian, a geodesic parallel, an oscillating geodesic, an asymptotic geodesic or a 
bi-asymptotic geodesic. We now define the boundary values and boundary function 
on the set of geodesics on M . 

Definition 3.3. Let γ(t) =  x(u(t), v(t)) be a non-meridional geodesic on a spherical 
surface of revolution M . Define b0(γ) = inf  t∈R(u(t)) and b1(γ) = supt∈R

(u(t)) to 
be the left and right boundary values of γ, respectively. If γ is a meridian we 
define b0(γ) =  uN and b1(γ) =  uS. The  boundary function b of γ is defined by 
b(γ) =  (b0(γ), b1(γ)) ∈ [uN , uS] × [uN , uS ]. 

In the case of a non-meridional geodesic, by proposition 3.1 we have that b0(γ) 
and b1(γ) are the corresponding u values for the parallels ρ0 and ρ1. When the 
geodesic under consideration is clear, we will often drop the reference to γ and refer 
to the boundary values of γ as b0 and b1. 

Definition 3.4. Two geodesics γ1 and γ2 on M are equivalent if γ1 and γ2 are in 
the same orbit of the natural S1 action on M .  We denote the  set  of all  equivalence  
classes [γ] by ΓM . 

Since the S1 action on M preserves parallels, we conclude from proposition 3.1 
that the boundary function b : ΓM → [uN , uS] × [uN , uS ] is well-defined and in
jective. We adopt the common abuse of notation by simply referring to a geodesic 
γ ∈ ΓM . 

We can classify all geodesics on a spherical surface of revolution by boundary 
function: 

Definition 3.5. Let γ be a geodesic in ΓM . 

(1)	 If b = (uN , uS) then γ is a meridian. Otherwise, if γ is not a meridian, 
(2)	 If b0 = b1, γ is a geodesic parallel, 
(3)	 If b0 = b1 with h1(b0) and h1(b1) both non-zero, then γ is an oscillating 

geodesic. 
(4)	 If b0 = b1 with both h1(b0) and h1(b1) equal to zero, then γ is a bi-asymptotic 

geodesic, otherwise 
(5)	 If b0 = b1 with either h1(b0) or h1(b1) equal to zero, then γ is an asymptotic 

geodesic. 

Examples of an oscillating and asymptotic geodesics are given in figure 1. 
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Figure 1. An oscillating and 
asymptotic geodesic on a spher
ical surface of revolution 

Let γ be an oscillating geodesic. If u(t0) =  b0 = u(t1) for  t0 = t1 and there is 
a unique t ∈ (t0, t1) such that u(t) =  b1, we call the segment of γ corresponding 
to the interval [t0, t1] an  oscillation. Since it is not important for what follows, we 
will refer to bi-asymptotic geodesics as simply asymptotic geodesics also. 

4. A Topology on the Set of Oscillating Geodesics 

Definition 4.1. A geodesic  γ is closed if there exist real numbers t0 = t1 such that 

γ(t0) =  γ(t1) and  γ1(t0) =  γ1(t1). 

Equality of the derivatives distinguish closed geodesics from the more general 
notion of geodesic loop. Every geodesic parallel is closed, and no asymptotic geo
desic or meridian (using our definition) is closed. Oscillating geodesics, however, 
may or may not be closed. Since we are interested in closed geodesics the set 

ΓO = {[γ] :  γ is an oscillating geodesic}M 

will be the most interesting to us. 
Note that if γ is oscillating, then γ is the unique geodesic with left boundary 

b0(γ). This is because h1(b0(γ)) = 0, so the parallel at u = b0(γ) is not geodesic 
and there can be no geodesic asymptotic to it. Thus, by our classification, any 
geodesic which shares a left boundary with γ must be oscillating itself. But, any 
oscillating geodesic intersects its left boundary tangentially, so by the definition of 
our equivalence relation and the uniqueness of geodesics we conclude that γ is the 
unique geodesic in its equivalence class with left boundary b0(γ). Thus, the map 
b0 : ΓO → (uN , uS) is injective. In particular, for oscillating geodesics, the right M 
boundary value is determined by the left boundary value. 

Proposition 4.2. Let b1(u1) = min{u > u1 : h(u) =  h(u1)} and let U = {u1 ∈ 
(uN , uS ) :  h1(u1) > 0 and  h1(b1(u1)) < 0}. Then  U is an open subset of the interval 
(uN , uS ) and b0 : ΓO → U is a bijection. M 

Proof. We first show that b0 is a bijection. Indeed, b0(γ) ∈ U for any γ ∈ ΓO byM 
proposition 3.1. For any u1 ∈ U, there is a geodesic γ with the initial conditions 
u(0) = u1, u1(0) = 0. Then h1(u1) > 0 implies γ is not a geodesic parallel and 
b0(γ) =  u1. Thus,  b1(γ) =  b1(u1), and h1(b1(u1)) < 0 implies γ is not asymptotic, 
so γ ∈ ΓO 

M . 
Smoothness of h implies that if u1 ∈ U there exists an E >  0 such that (u1 − 

E, u1 + E) ⊂ U. Thus,  U is an open subset of the real interval (uN , uS). D 
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We can now topologize on ΓO by pull-back: We declare a subset U ⊂ ΓO to be M M 
open if and only if b0(U) is  open  in  U. Hence ΓO is homeomorphic to a disjoint M 
union of open intervals of (uN , uS ). This allows us, for example, to speak of a 
sequence of geodesics in the space ΓO as a sequence of (left) boundary values from M 
U. Consequently, we can also easily define convergence of oscillating geodesics, and, 
more importantly, continuous functions defined on ΓO 

M . 

5. The Period Function 

We now present our main analytic tool for detecting closed geodesics on spherical 
surfaces of revolution. 

In the case of oscillating or asymptotic geodesics, the geodesic equations (2.1) and 
(2.2) can be reduced to a first-order system and solved explicitly. Equation (2.2), 
after dividing by v1 (which is never zero for oscillating or asymptotic geodesics) and 
integrating, becomes l l l 

11 G1v Gu
dt = − u 1 dt = − dt, 

v1 G G 
1since Gv = 0.  Then  v = c/G for some constant c ∈ R and c = Gv1 = cγ , again 

1showing the slant cγ to be constant. Using v = cγ /G in the unit speed relation 
Eu12 + Gv12 = 1  gives  j

G − c2 
γ 

u 1 = ± . 
EG 

Hence, √ 
1dv v cγ E 

= = ± J ,√du u1 
G G − c2 

γ 

and l √ 
cγ E 

v = ± J du. √ 
G G − c2 

γ 

As we will soon see, by measuring the total change in v an oscillating geodesic 
makes between its boundaries one can determine if it is closed. This motivates the 
following definition. 

Definition 5.1. The period function ΦM : ΓO → (0, ∞) is defined by M √ √ l b1 (γ) l b1(γ)cγ E cγ E 
ΦM (γ) =  2  J du = 2  J du. 

b0 (γ) G G − c2 b0(γ) h(u) h2(u) − c2 
√ 

γ γ 

We denote the integrand by fγ (u). 

Geometrically, the period function gives the change in v as γ undergoes one os
2cillation. Since h2(b0) =  h2(b1) =  cγ , the integral is improper for every geodesic γ, 

however, because it represents the change in v between b0 and b1 it must converge 
for every γ ∈ ΓO We can use this geometric interpretation to see that the pe-M . 
riod function is invariant under reparametrization and scaling of M and to extend 
the domain of the period function to include the asymptotic geodesics, by setting 
ΦM (γ0) =  ∞ for any asymptotic geodesic γ0. 

The next theorem shows how the period function can be used to detect closed 
geodesics. 
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Theorem 5.2. An oscillating geodesic γ on a spherical surface of revolution M is 
closed if and only if ΦM (γ) =  2qπ for some rational number q ∈ Q. 

Proof. We can assume without loss of generality that γ satisfies the initial condi
tions 

xv (b0, 0)
γ(0) = x(b0, 0) and γ1(0) = . lxv (b0, 0)l 

If γ(t) =  x(u(t), v(t)) is closed, there exists a t0 ∈ R+ such that γ(t0) =  γ(0) 
and γ1(t0) =  γ1(0). In particular, γ(t0) =  x(b0, 2rπ) for some positive integer r. 
Note that the period function does not depend on the value v(0), so by rotational 
symmetry, v changes the same amount during every oscillation of γ. Clearly, be
tween t = 0  and  t = t0, γ has completed, say, s oscillations. That is, there have 
been s times subsequent to t = 0  that  u(t) has re-attained the boundary value b0. 
Therefore, ΦM (γ) =  2(r/s)π. 

Conversely, suppose ΦM (γ) =  2(r/s)π for some r, s ∈ Z+, where  γ is taken to 
have the same initial conditions. Then there exists a t0 ∈ R+ such that 

γ(t0) =  x(b0, 2rπ) =  x(b0, 0) = γ(0). 

Since u(t0) =  b0, by proposition 3.1, we must have γ1(t0) tangent to xv (b0, 0), and 
thus, γ1(t0) =  γ1(0). Hence γ is closed. D 

The next theorem shows that the period function is continuous. A sketch of the 
proof of this result first appeared in the unpublished manuscript [6]. For clarity of 
the exposition, we relegate to section 9 the rather technical proof of this result. 

Theorem 5.3. If γ0 ∈ ΓO , then  ΦM is continuous at γ0.M 

As we will see, the continuity of ΦM at every oscillating geodesic implies the 
existence of infinitely many geodesics on many spherical surfaces of revolution. 

Definition 5.4. A non-empty open subset U ⊆ ΓO 
M on which ΦM is a constant, 

irrational multiple of π is said to be void. 

The definition is motivated by theorem 5.2, which implies that all oscillating 
geodesics γ with b0(γ) ∈ U fail to close smoothly, so U is void of closed geodesics. 

Corollary 5.5. Suppose a spherical surface of revolution M has a non-empty open 
subset U of ΓO that is not void. Then M has infinitely many closed geodesics. M 

Proof. Let ΦM (U) =  {ΦM (γ) :  γ ∈ U}. If  ΦM (U) is a constant rational multiple of 
π we are done by theorem 5.2, so suppose ΦM is not constant on U . By  continuity  
of ΦM , there exists a nonempty open interval I ⊂ ΦM (O). Qπ is dense in any such 
I yielding an infinite number of closed geodesics in U by theorem 5.2. D 

The following corollary shows that the existence of an asymptotic geodesic on 
M implies the existence of such a non-void subset of ΓO , and hence the existence M 
of infinitely many closed geodesics. 

Corollary 5.6. Let M be a spherical surface of revolution with an asymptotic 
geodesic γ0 asymptotic to the geodesic parallel at b0(γ0). Then  if  γn → γ0 is a 
sequence of oscillating geodesics, 

lim ΦM (γn) =  ΦM (γ0) =  ∞. 
n→∞ 

Thus, by corollary 5.5, M has infinitely many closed geodesics. 
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l b1(γ0) 

Proof. Let A >  0. ΦM (γ0) =  fγ0 = ∞, so  there  exists  δ, μ > 0 so  that  
b0(γ0 ) l b1(γ0 )−μ 

A <  fγ0 . Choose  N > 0 large enough so that b0(γn) < b0(γ0) +  δ and 
b0 (γ0)+δ 

b1(γn) > b1(γ0) − μ for n > N . Thus,  l lb1(γn) b1 (γ0)−μ 

ΦM (γn) =  fγn > fγn 
b0(γn) b0 (γ0)+δ 

On the interval (b0(γ0)+δ, b1(γ0)−μ), fγn → fγ0 , and  both  fγn and fγ0 are bounded 
1hence integrable. Thus, by dominated convergence, for ε > 0, there is N > N  so 

that   l lb1(γ0 )−μ b1 (γ0)−μ 

ΦM (γn) > fγn > fγ0
− ε > A − ε 

b0 (γ0)+δ b0(γ0)+δ 

1for n > N . This implies ΦM (γn) → ∞. D 

Corollary 5.7. A spherical surface of revolution whose profile curve has more than 
one critical point necessarily has an infinite number of closed geodesics. 

Proof. This follows from proposition 3.2 and corollary 5.6. D 

Corollary 5.8. A spherical surface of revolution whose profile curve has a sin
gle critical point (which must be a maximum), has exactly one closed geodesic or 
infinitely many. 

Proof. The parallel at the critical point is necessarily geodesic. If ΓO is not void, M 
then there are an infinite number of closed geodesics by corollary 5.5. The only 
other possibility is that ΦM is a constant irrational multiple of π over its entire 
domain ΓO Then by theorem 5.2, no oscillating geodesic is closed, and M has M . 
exactly one closed geodesic. D 

Definition 5.9. A spherical surface of revolution with exactly one closed geodesic 
wil l be cal led a void surface. 

An explicit example of a void surface will be given in section 8. 

6. Surfaces of Revolution with Constant Period Function 

Since, ultimately, we wish to show that no void spherical 2-orbifolds of revolution 
exist, corollary 5.8 implies we should look for general conditions that imply the 
period function is constant. We do exactly that in this section. 

If a spherical surface of revolution x(u, v) =  (g(u), h(u) cos  v, h(u) sin  v) obtained 
from  the profile curve  α(u) =  (g(u), h(u)) is to have a constant period function, we 
can, without loss of generality, assume that h(u) is a smooth function from [0, L] 
to [0, 1] satisfying: 

(1) h(0) = h(L) =  0  
(2) h has a unique critical point, say u0, on  [0, L] 
(3) h(u0) =  1  

where l Ju 
2 

g(u) =  1 − [h1(t)] dt. 
0 
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As a result, we may assume the metric on M is of the form 

ds2 = du2 + h2(u)dv2 . 

If the period function ΦM is to be constant, proposition 3.2 and corollary 5.6 
imply that condition (2) is necessary. (1) and (3) may be satisfied by an appropriate 
reparametrization and scaling of the profile curve, which does not affect the period 
function. The following proposition is adapted from [3]. 

Proposition 6.1. Let M be a spherical surface of revolution satisfying conditions 
(1),(2) and (3). We can define new coordinates (r, v) on M so  that  the metric in  
these coordinates has the form 

ds2 = E(r)dr2 + sin2 r dv2 , 

where Ê(cos r) =  E(r) is a function from [0, π] to R+ . 

Proof. Define f : [0, L] → [0, π] and  c : [−1, 1] → [0, L] by   
arcsin h(u)  if  u ∈ [0, u0]

f(u) =
π − arcsin h(u) if  u ∈ [u0, L]  

π(h|[0,u0])
−1(sin r) if  r ∈ [0, ]2c(cos r) =

(h|[u0 ,L])
−1(sin r) if  r ∈ [ π , π].2 

Then, setting r = f(u), we have c(cos r) =  f−1(r) =  f−1(f(u)) = u and 

h(u) =  h[c(cos r)] = sin r. 

Hence, ( )2 ( )2
1 cos r 

du2 = dr2 = dr2 ,
f 1(u) h1[c(cos r)] 

and we can now write the metric on M as 

ds2 = E(r)dr2 + sin2 r dv2 , 

where Ê(cos r) =  E(r) is a function from [0, π] to  R+ defined by ⎧ 
2 ⎪ cos r π ⎪ ˆ⎪ E(cos r) =  ( if r = ⎨ )2 2 

h1[c(cos r)]
E(r) =  ⎪ 1 −1 ⎪ π ⎩ E(0) = = if r = ⎪ ˆ

2 h11(u0) 2 . [f 1(u0)]

Note that condition (2) implies h11(u0) < 0 and that by differentiating the relation 
h(u) =  sin  f(u) twice and evaluating at u = u0 shows that f 1(u0) =  −h11(u0). 
Thus E is continuous on [0, π]. D 

We can now take as a starting point in our search for surfaces with constant 
constant period function those surfaces of revolution with metric of the form 

ds2 = E(u) du2 + sin2 u dv2 , 

where E(u) is a function from [0, π] to  R+ . This corresponds to the spherical surface 
of revolution M with profile curve α(u) = (g(u), sin u), where l u 

g(u) =  E(t) − cos2 t dt.  
0 
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If γx is the geodesic with left boundary value b0 = x, then the right boundary value 
πb1 = π − x and the period function may then be written as a function of x ∈ (0, ): l √ 

π−x sin x · E(u)
ΦM (γx) =  ΦM (x) =  du, 

x sin u sin2 u − sin2 x 
πwhich is continuous on (0, ) by theorem 5.3. The following technical lemma 2 

adapted from [3] will be essential in our characterization of surfaces of revolution 
with constant period function. 

Lemma 6.2. Consider the function l π−x sin x · f(u)
F (x) =  du 

x sin u sin2 u − sin2 x 

Define a function f̂  by the formula f(u) =  f̂(cos u). Then  F (x) is identically zero 
π on (0, ) if and only if f̂  is an odd function over [−1, 1].2 

Proof. Let f̂e(cos u) =  (f̂(cos u) +  f̂(− cos u))/2 be the even part of f̂ . Then  f̂  is 
odd if and only if f̂e is identically zero. We have 

π 
2 

l π−xf̂(cos u) sin x · f̂(cos u)
F (x) =  

l
lx 

sin x · 
du + du 

sin2 u − sin2 π 
2

sin u sin2 u − sin2sin u x x 
π 
2 f̂(cos u)sin x · 

du= 
x sin u sin2 u − sin2 x l π−x l π−xsin x · 2f̂e(cos u) sin x · f̂(− cos u)

du − du+ 
sin u sin2 u − sin2 sin u sin2 u − sin2π 

2 
π 
2

x x 
π 
2 

π 
2sin x · f̂(cos u) f̂(cos u) 

l l
sin x · 

du − du= 
x sin u sin2 u − sin2 x x sin u sin2 u − sin2 x 

π 
2 sin x · 2f̂e(cos u) 

l
du+ 

x sin u sin2 u − sin2 x 
π 
2 sin x · f̂e(cos u) 

l
= 2  du. 

x sin u sin2 u − sin2 x 
πSo f̂e(cos u) ≡ 0 gives  F (x) = 0 for all x ∈ (0, ).2 

For the converse, we follow a proof given in [3]. Assume F (x) is zero for all 
π x ∈ (0, ), then 2 

π−x l
sin x · f(u) 

du = 
π 
2 sin x · 2f̂e(cos u) 

l 
du ≡ 0.F (x) =  

x sin u sin2 u − sin2 x x sin u sin2 u − sin2 x 

So the function l π 
2 cos x · F (x)

I(a) =  dx 
a sin2 x − sin2 a 

πis zero for a ∈ (0, ]. Also, for such a, the function 2 

1 G ) G )
sin2 u − sin2 x sin2 x − sin2 a
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π πis (Lebesgue) integrable on the set {(u, x) ∈ [a, ] × [a, ] | x ≤ u}. Applying 2 2 
Fubini’s Theorem we have   

π 
2 2f̂e(cos u) 

l u sin x cos x 
l

I(a) =  dx du. 
sin ua a sin2 u − sin2 x sin2 x − sin2 a /

The substitution t = sin2 x − sin2 a sin2 u − sin2 x gives l π 
2 

π 

f̂e(cos u) f̂e(cos u)
(l )

∞ dt
 

0 1 +  t2
 du = π 
l

a 

2 

I(a) =  2  du. 
sin u sin ua 

π πAs sin u is strictly positive on (0, ], I(a) = 0 for all a ∈ [0, ] implies f̂e(cos u) =  0  2 2 

for all cos u ∈ [−1, 1]. That is, f̂  is odd on [−1, 1]. D 

Proposition 6.3. For a spherical surface of revolution M with metric 

ds2 = E(u) du2 + sin2(u) dv2 , 
√ 

πdefine ac(u) =  E(u) − c for any c ∈ R+. Then  ΦM (x) ≡ 2cπ on (0, ) if and 2 
only if the function âc defined by âc(cos u) =  ac(u) is an odd function from [−1, 1] 
to [−c, c]. 

Proof. Let S2 be the standard 2-sphere of constant curvature 1 in R3 generated 
as a surface of revolution by the profile curve α(u) = (cos  u, sin u). Thus, S2 is 
parametrized by 

x(u, v) =  (cos  u, sin u cos v, sin u sin v). 

The geodesics on S2 are great circles, so l π−x sin x 
ΦS2 (x) = 2  du ≡ 2π. 

x sin u sin2 u − sin2 x 
πThen, for all x ∈ (0, ),2 l √ lπ−x π−xsin x · E(u) sin x · (c + âc(cos u))

ΦM (x) = 2  du = 2  du 
x sin u sin2 u − sin2 x x sin u sin2 u − sin2 x l π−x sin x · âc(cos u) 

= cΦS2 (x) + 2  du
 
x sin u sin2 u − sin2 x
 l π−x sin x · âc(cos u)

= 2cπ + 2  du.
 
x sin u sin2 u − sin2 x
 

The proof of the proposition now follows from lemma 6.2, which implies that âc√ 
must be odd. For u ∈ (0, π), c + âc(cos u) =  E(u) > 0 so âc(cos u) > −c 
for u ∈ (0, π). This implies that âc(− cos u) > −c, so  since  âc is odd, we have 
âc(cos u) =  ac(u) ∈ [−c, c] for  u ∈ (0, π). D 

At this point we are able to recover Bangert’s result for spherical surfaces of rev
olution which have (smooth) Riemannian metrics, such as ellipsoids of revolution. 
We first need a computation. 

Let φN , resp.  φS , be the angle between the profile curve α(u) = (g(u), h(u)) = 
(g(u), sin u) and the axis of rotation at g(0), resp. g(π). Then 

h1(0) cos(0) 1 
(6.1a) sin φN = J = = 

2 2 E(0) c + âc(1) 
[g1(0)] + [h1(0)]



 

� 
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and 

−h1(π) − cos(π) 1 1 
(6.1b) sin φS = J = = = , 

2 2 E(π) c + âc(−1) c − âc(1) 
[g1(π)] + [h1(π)]

with the last equality following since âc is odd on [−1, 1]. 
We now easily deduce Bangert’s result for Riemannian spherical surfaces of rev

olution. 

Corollary 6.4. Every smooth Riemannian S2 arising as a surface of revolution 
has infinitely many closed geodesics. 

Proof. The result follows if the surface has non-constant period function by corol
lary 5.5. Thus, we assume the surface has constant period function. Since the sur
face is a smooth manifold, the profile curve meets the x-axis at right angles, so that 
sin φN = sin  φS = 1. Equations (6.1a) and (6.1b) imply that c+âc(1) = c−âc(1) = 1 
so 0 = âc(1) = âc(−1) and c = 1. Hence ΦM ≡ 2π and all oscillating geodesics 
close up after one oscillation. D 

7. Orbifolds of Revolution 

Our work up to this point is valid for spherical surfaces of revolution in general. 
Since our main theorem 1.1 concerns orbifolds, we now specialize to that case. 
Spherical orbifolds of revolution are easily identifiable by their tangent cones at the 
poles. Namely, the tangent cone at a pole must be isometric to the metric quotient 
of the flat plane R2 by a finite cyclic group of rotations fixing the origin. Note that 
the tangent cone at a pole is generated by rotating the tangent line to the profile 
curve at the pole about the axis of rotation. If the cyclic groups at the poles are of 
different orders, the orbifold is commonly referred to as bad since it will not arise 
as a quotient of a Riemannian S2 by a finite cyclic group of isometries [16]. 

In general, a flat right circular cone with vertex angle φ is obtained by identifying 
the edges of a plane circular sector of angle θ. The relation between θ and φ is easily 
computed: θ = 2π sin φ. See figure 2. Thus, if the tangent cone at a pole of spherical 
orbifold of revolution is isometric to R2/Zm, then  θ = 2π/m for a positive integer 
m. So, for an orbifold of revolution, if φN and φS are as in equations (6.1), we 
must have sin φN = 1/m and sin φS = 1/k for some positive integers m and k. 

Figure 2. Cone as quotient of a planar sector 

We have the following restriction for spherical orbifolds of revolution of constant 
period function. 
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Theorem 7.1. Let M be a spherical orbifold of revolution with metric ds2 = 
πE(u) du2 + sin2(u) dv2. Then  ΦM (x) ≡ 2cπ on (0, ) implies c is rational. 2 

Proof. Equations (6.1) give 

1 1 1 
sin φN = and sin φS = = , 

c + âc(1) c + âc(−1) c − âc(1) 

since âc is odd on [−1, 1]. As noted above, if M is an orbifold, then c + âc(1) and 
c − âc(1) must be integers. This easily implies that c be rational. In fact, c = n/2 

πfor some positive integer n and ΦM (x) =  nπ on (0, ). D2 

We are now in a position to prove the main result of this paper. 

Theorem 7.2. There are no void spherical orbifolds of revolution. Hence, every 
orbifold of revolution has infinitely many closed geodesics. 

Proof. Suppose one such example existed. By corollary 5.7, we may assume that the 
profile curve has a single critical point and hence by proposition 6.1 that the metric 
on M is of the form required in theorem 7.1. By theorem 5.2 and corollary 5.5, 
ΦM must be a constant, irrational multiple of π. However, by Theorem 7.1, an 
orbifold of revolution with constant ΦM must have ΦM ≡ 2cπ with c ∈ Q. Hence 
no such void spherical orbifold exists and all spherical orbifolds of revolution must 
have infinitely many geodesics. D 

8. Two examples 

In summary, we can characterize all spherical surfaces of revolution with constant 
period function as having a metric of the form ds2 = (c+f(cos u))2 du2 +sin2(u) dv2 

where 

(1) c is a real constant, 
(2) f(cos u) is an odd function from [−1, 1] to [−c, c]. 

The void spherical surfaces of revolution satisfy these conditions but have c /∈ Q, and  
hence are not orbifolds. The orbifolds of revolution with constant period function 
must satisfy (1), (2) and 

(3) c + f(1) and c − f(1) are positive integers. 

Example 8.1 (Tannery’s pear). Take c = 2  and  ac(u) =  cos  u (so âc(cos u) is  the  
identity map on [−1, 1], and hence odd). This surface, known as Tannery’s pear, 
has a period function that is constant 4π, so all non-meridional geodesics are closed. 
It also is an orbifold. 

Taking as a profile curve α(u) =  (g(u), h(u)), where h(u) = sin  u and l lu u 

g(u) =  E(t) − (h1(t))2 dt = (2 + cos t)2 − cos2 t dt  
0 0 l u √ √ 

= 4 + 4  cos  t dt  = 4  2 sin(u/2) 
0 

gives a parametrization for Tannery’s pear in R3: 
√ 

x(u, v) = (4  2 sin(u/2), sin u cos v, sin u sin v), 

where u ∈ [0, π] and  v ∈ [0, 2π]. 
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We also have that 

cos(0) 1 − cos(π)
sin φN =  = and sin φS =  = 1, 

E(0) 3 E(π) 

so Tannery’s pear is an orbifold. In orbifold terminology, Tannery’s pear is a Z3 
teardrop, as the metric is actually smooth at u = π and the single cone point at 
u = 0 is of order 3. See figure 3. 

Figure 3. A typical closed geodesic on a Tannery pear 

√ 
Example 8.2 (A void surface). In the previous example, take c = 5. A surface 
with this metric can be isometrically embedded in R3 by the parametrization (l J )u √ 

x(u, v) =  5 + 2  5 cos  t dt,  sin u cos v, sin u sin v . 
0 

√ 
It has constant period function 2π 5 and hence, its only closed geodesic is the 
parallel at u = π/2. However, 

1 1 
sin φN = √ and sin φS = √ , 

5 + 1  5 − 1 

so, like all void spherical surfaces of revolution, this one is not an orbifold. See 
figure 4. 

Figure 4. An oscillating geodesic that is not closed 
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9. Proof of the Continuity of the Period Function 

In this section, we prove theorem 5.3, which asserts the continuity of the period 
function. The notation used will be that from section 5. 

Proof. Without loss of generality, we will assume the profile curve α = (g, h) of  
M is parametrized by arclength. Thus, E = [g1(u)]2 + [h1(u)]2 ≡ 1. Let γ0 be an 
oscillating geodesic. By proposition 4.2 there is 0 < ε0 < 1 so  that  h1(u) > 0 on  
B(b0(γ0), ε0) and  h1(u) < 0 on  B(b1(γ0), ε0). Here B(p, r) is the open interval of 
radius r centered at p. By shrinking ε0 if necessary, we may assume |h1(u)| ≥ η >  0 
on B = B(b0(γ0), ε0) ∪ B(b1(γ0), ε0). 

Let γn	 be a sequence of oscillating geodesics with b0(γn) → b0(γ0) and  b0(γn) ∈ 
1 1B(b0(γ0), ε0 

2). We may also assume b1(γn) ∈ B(b1(γ0), ε0 
2), by choosing n large 4	 4 

enough. 
Consider the integrand fγn (u) of the period function ΦM : 

cγn	 cγn 1 
fγn (u) =  J = · 

h(u) h(u) +  cγn h(u) − cγnh(u) h2(u) − c2 
γn 

for u ∈ (b0(γn), b1(γn)). Since cγn = h(b0(γn)), applying the mean value theorem 
to the second factor in the last equality yields: 

h(b0(γn)) 1 1 
fγn (u) =  · 

h(u) h(u) +  h(b0(γn)) h1(ξu) u − b0(γn) 

for some ξu ∈ (b0(γn), u). Let m = inf  B h and define λ = (2mη)−1/2. Then  since  
h(b0(γn)) < h(u) for  u ∈ (b0(γn), b1(γn)), we have 

λ 
fγn (u) ≤ on (b0(γn), b0(γn) +  ε0), 

u − b0(γn) 

and similarly, 

λ 
fγn (u) ≤ on (b1(γn) − ε0, b1(γn)) 

b1(γn) − u 

To show continuity at γ0, we now prove that |ΦM (γn) − ΦM (γ0)| → 0 as  n → ∞. 
Unfortunately, to do this, we must consider separate cases. 

Consider first the case where b0(γn) / b0(γ0). Define the positive numbers 
δ = b0(γ0) − b0(γ ) +  1 ε2 

0 and μ = b1(γ ) − b1(γ0) +  1 ε2 
0. Then  n n 4 n n 4 

1 
n|ΦM (γ	 ) − ΦM (γ0)| ≤

2  	  l l  b0 (γn)+δn b0(γ0 )+δn   	  
(9.1a)	  fγn − fγ0

 +  	  b0 (γn) b0(γ0 )  	  l l  b1 (γn) b1 (γ0)   	  
(9.1b)	  fγn − fγ0

 +  	  b1 (γn)−μn b1 (γ0)−μn  	  l l  b1 (γn)−μn b1(γ0 )−μn   	  
(9.1c)	  fγn − fγ0

  	  b0 (γn)+δn b0 (γ0)+δn 
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We now turn our attention to each of the three terms in equations (9.1). For 
equation (9.1a), we have 

l lb0 (γn)+δn b0 (γ0)+δn 

f − fγn γ0 
b0 (γn) b0 (γ0) l	 l lb0(γ0 ) b0(γn)+δn	 b0 (γ0)+δn 

(9.2)	 ≤ fγn + (fγn − fγ0 ) + fγ0 
b0(γn) b0(γ0 ) b0 (γn)+δn 

We show that each of the terms in (9.2) can be made arbitrarily small. For the 
first term of (9.2): l lb0 (γ0) b0 (γ0) 

f ≤ λ [u − b0(γn)]
−1/2 

= 2λ(b0(γ0) − b0(γn))1/2 < λε0 
b0 (γn) b0 (γn) 

γn 

For the third term of (9.2): l lb0 (γ0)+δn b0(γ0)+δn 
−1/2 

)1/2 − εfγ0 ≤ λ [u − b0(γ0)] = 2λ[(δn 0/2] 
b0 (γn)+δn b0(γ0)+ 1 ε2 

4 0 

which goes to 0 as n → ∞. We handle the second term of (9.2) by applying the 
2dominated convergence theorem: Note that b0(γn) +  δn = b0(γ0) +  1 ε0 and on the  4 

2interval (b0(γ0), b0(γ0) +  1 ε0), fγn → fγ0 pointwise. Furthermore, on this interval 4 l ε2b0(γ0 )+ 1 

−1/2 −1/2 4 0 

fγn ≤ λ [u − b0(γn)] < λ [u − b0(γ0)] = g, and  g = λε0. Thus,  
b0 (γ0) 

by dominated convergence 

l b0(γn)+δn 

(fγn − fγ0 ) → 0 as  n → ∞  
b0(γ0 ) 

For (9.1b) of equations (9.1) we write: 

l lb1 (γn) b1 (γ0) 

f − fγn γ0 
b1 (γn)−μn b1 (γ0)−μn l	 l lb1(γn) b1 (γ0)	 b1(γn)−μn 

(9.3)	 ≤ fγn + (fγn − fγ0 ) + fγ0 
b1 (γ0) b1 (γn)−μn b1(γ0 )−μn 

Arguing similarly, we conclude that each term of (9.3) can be made arbitrarily 
small. We omit the details. 

Finally, for (9.1c) we have: 

l lb1 (γn)−μn b1 (γ0)−μn 

f − fγn γ0 
b0 (γn)+δn b0 (γ0)+δn l l	 lb0 (γ0)+δn b1(γ0 )−μn	 b1 (γn)−μn 

(9.4)	 ≤ fγn + (fγn − fγ0 ) + fγn 
b0 (γn)+δn b0(γ0 )+δn b1 (γ0)−μn 

We now show that each of the terms in (9.4) can be made arbitrarily small. Note 
2 2that b0(γ0)+δn = b0(γ0)+ [b0(γ0)−b0(γn)] + 1 ε0 < b0(γ0)+ 1 ε = b0(γn)+ [b0(γ0)−4 2 0 
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2	 2b0(γn)] + 1 ε0 < b0(γn) +  3 ε0 < b0(γn) +  ε0. Thus, for the first term of (9.4): 2	 4 l lb0 (γ0)+δn b0(γ0)+δn 
−1/2

fγn ≤ λ [u − b0(γn)]

b0 (γn)+δn b0(γn)+δn
 [	 ]

2 )1/2)=2λ (2δn − ε0/4)1/2 − (δn → 0 as  n → ∞  

For the third term of (9.4) we note that, similar to before, b1(γ0)−μn > b1(γn)−ε0 

thus: l lb1(γn)−μn b1 (γn)−μn 

]−1/2fγn ≤ λ [b1(γn) − u

b1(γ0)−μn b1(γ0)−μn
 [	 ]

2 = − 2λ (μn)1/2 − (2μn − ε0/4)1/2) → 0 as  n → ∞  

For the middle term of (9.4), just note that fγn and fγ0 are both bounded on 
the interval (b0(γ0) +  δn, b1(γ0) − μn) and  that  fγn → fγ0 pointwise. Dominated 
convergence then implies that this term approaches zero as n → ∞. 

This is enough to verify continuity of the period function in the case when 
b0(γn) / b0(γ0). We now complete the continuity proof by treating the case where 
b0(γn) � b0(γ0). The proof here is essentially obtained by interchanging the roles 
of γn and γ0 in what has gone before. However, there are some minor technical 
differences, which we point out. 

2To this end, define the positive numbers δn = b0(γn) − b0(γ0) +  1 ε0 and μn = 4 
2b1(γ0) − b1(γn) +  1 ε0. Then  4 

1 |ΦM (γ0) − ΦM (γn)| ≤
2 l lb0 (γ0)+δn b0 (γn)+δn 

(9.5a) fγ0 − fγn + 
b0 (γ0) b0 (γn) l lb1 (γ0) b1 (γn) 

(9.5b) fγ0 − fγn + 
b1 (γ0)−μn b1 (γn)−μn l lb1 (γ0)−μn b1 (γn)−μn 

(9.5c) fγ0 − fγn 
b0 (γ0)+δn b0 (γn)+δn 

For equation (9.5a), we have 

l lb0 (γ0)+δn b0 (γn)+δn 

f − fγ0 γn 
b0 (γ0) b0(γn) l	 l lb0(γn) b0(γ0)+δn	 b0(γn)+δn 

(9.6)	 ≤ fγ0 + (fγ0 − fγn ) + fγn 
b0(γ0 ) b0(γn) b0(γ0 )+δn 

As before, we show that each of the terms in (9.6) can be made arbitrarily small. 
For the first term of (9.6): 

l lb0 (γn) b0 (γn) 

f ≤ λ [u − b0(γ0)]
−1/2 

= 2λ(b0(γn) − b0(γ0))
1/2 < λε0 

b0 (γ0) b0 (γ0) 
γ0 
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For the third term of (9.6): l lb0(γn)+δn b0(γn)+δn 

fγn ≤ λ [u − b0(γn)]
−1/2 

= 2λ[(δn)1/2 − ε0/2] 
b0(γ0 )+δn b0(γn)+ 1 ε2 

4 0 

which goes to 0 as n → ∞. We now handle the second term of (9.6). Since the 
functions fγn are not defined on the entire domain of fγ0 , there is a minor technical 
difference between this situation and the analogous one for (9.2). Define (	 )

ˆ fγn on b0(γn), b0(γn) +  4 
1 ε0 

2 ,
fγn = ( ) ( )

fγ0 on b0(γ0), b0(γn) ∪ b0(γn) +  1 ε0 
2, b0(γ0) +  1 ε2 

4 4 0 l	 lb0 (γ0)+δn b0 (γ0)+ 1 ε2 

Then (fγ0 − fγn ) =  
4 0 

(fγ0 − f̂γn ). 
b0(γn) b0 (γ0) 

Then f̂γn → fγ0 a.e. on (b0(γ0), b0(γ0) +  1 ε2 
0) and  f̂γn ≤ gn where 4 (	 )

λ[u − b0(γn)]−1/2 on b0(γn), b0(γn) +  1 ε2 ,4 0 g	 = ( ) ( )n 
λ[u − b0(γ0)]

−1/2 on b0(γ0), b0(γn) ∪ b0(γn) +  1 ε0 
2, b0(γ0) +  1 ε2 

4 4	 0 

Furthermore, on (b0(γ0), b0(γ0) +  1 ε0
2), gn → g a.e. where g = λ[u − b0(γ0)]

−1/2 
4 l ε2 l ε2b0(γ0 )+ 1 b0 (γ0)+ 1 

4 0 4 0 

and lim gn = g. By a modified dominated convergence 
n→∞ b0(γ) b0 (γ) 

theorem which may be found, for example, in [15], we may conclude that l	 l ε2b0 (γ0)+δn	 b0 (γ0)+ 1 

(fγ0 − fγn ) = 
4 0 

(fγ0 − f̂γn ) → 0 as  n → ∞  
b0 (γn)	 b0 (γ0) 

Arguing similarly, we conclude that (9.5b) can be made arbitrarily small. We omit 
the details. Lastly, for (9.5c) we have: l lb1 (γ0)−μn b1 (γn)−μn 

fγ0 − fγn 
b0 (γ0)+δn b0(γn)+δn l l	 lb0 (γn)+δn b1 (γn)−μn	 b1 (γ0)−μn 

(9.7)	 ≤ fγ0 + (fγ0 − fγn ) + fγ0 
b0 (γ0)+δn b0 (γn)+δn b1(γn)−μn 

Arguing as we did for expression (9.4), we may conclude that the first and third 
terms of (9.7) approach 0 as n → ∞. For the middle term of (9.7), proceed in the 
same way as we did to handle the second term of (9.6) by defining (	 )

fγn on b0(γn) +  δn, b1(γn) − μn ,
f̂γn = ( ) ( )

fγ0 on b0(γ0) +  δn, b0(γn) +  δn ∪ b1(γn) − μn, b1(γ0) − μn 

and applying dominated convergence. This completes the proof of the continuity 
of the period function. D 
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