18 research outputs found

    Associations between biogeoclimatic zones, aquifer type, agricultural land and five gastrointestinal illnesses in British Columbia from 2000-2013 and potential implications under projected climate change

    Get PDF
    Rates of five acute gastrointestinal illnesses (AGIs) were calculated across three environmental variables in British Columbia: biogeoclimatic zone, aquifer type and agricultural land. The three bacterial pathogens (campylobacteriosis, Verotoxin-producing Escherichia coli and salmonellosis) were strongly correlated with many temperature-related variables calculated at the biogeoclimatic zone level. Combined relative risk for the three bacterial AGIs was 1.11189 (p=0.006) for every degree Celsius increase in mean annual temperature. When amalgamated into two groups (bacteria and parasites) both groups had significantly higher proportions associated with unconsolidated aquifers than with bedrock aquifers. Verotoxin-producing Escherichia coli rates were significantly higher in watersheds with agricultural land than those with none. Conversely, rates of campylobacteriosis, salmonellosis and giardiasis were significantly lower in agricultural watersheds

    Cumulative Impacts of Diverse Land Uses in British Columbia, Canada: Application of the “EnviroScreen” Method

    No full text
    (1) Objectives: Cumulative impacts refer to the legacies of land use decisions on environmental, community and health values. New integrative impact assessment tools are required to assess cumulative impacts on diverse values to meet sustainability goals in the 21st century. In this contribution, the CalEnviroScreen methodology-a screening tool capable of merging environmental, socioeconomic and health data-is applied to Local Health Areas in British Columbia, Canada. (2) Methods: The CalEnviroScreen is a method that standardizes environmental, socioeconomic and health data to depict an indicator’s percentile rank in the distribution of all units of analysis. The method combines indicators to measure four dimensions of pressure: environmental exposures, environmental effects, socioeconomic conditions, and sensitive populations (i.e., health outcomes). We create two versions of EnviroScreen: one following the CalEnviroScreen suite of indicators, and another that uses nuanced indicators to approximate the realities of industrial land uses present in British Columbia. BCEnviroScreen scores are plotted by race/ethnicity to understand potential racial inequities in cumulative exposures. (3) Results: The BCEnviroScreen has a greater likelihood of quantifying the cumulative impacts of diverse industries and land uses present across resource-dependent parts of the province, relative to the more urban-centric CalEnviroScreen indicator suite. Analyzing the distribution of BCEnviroScreen scores by race/ethnicity suggests that visible minority populations may be inequitably exposed to cumulative impacts in BC. (4) Conclusion: EnviroScreen tools hold significant potential to influence Canadian environmental health policy. This research demonstrates the applicability of the tool to British Columbia and other jurisdictions, illustrates how indicators can be tailored to better represent regional context, and shows how the tool can be used to screen for potential environmental health injustices

    Projected Local Rain Events Due To Climate Change and the Impacts on Waterborne Diseases in Vancouver, British Columbia, Canada

    Get PDF
    Background Climate change is increasing the number and intensity of extreme weather events in many parts of the world. Precipitation extremes have been linked to both outbreaks and sporadic cases of waterborne illness. We have previously shown a link between heavy rain and turbidity to population-level risk of sporadic cryptosporidiosis and giardiasis in a major Canadian urban population. The risk increased with 30 or more dry days in the 60 days preceding the week of extreme rain. The goal of this study was to investigate the change in cryptosporidiosis and giardiasis risk due to climate change, primarily change in extreme precipitation. Methods Cases of cryptosporidiosis and giardiasis were extracted from a reportable disease system (1997–2009). We used distributed lag non-linear Poisson regression models and projections of the exposure-outcome relationship to estimate future illness (2020–2099). The climate projections are derived from twelve statistically downscaled regional climate models. Relative Concentration Pathway 8.5 was used to project precipitation derived from daily gridded weather observation data (~ 6 × 10 km resolution) covering the central of three adjacent watersheds serving metropolitan Vancouver for the 2020s, 2040s, 2060s and 2080s. Results Precipitation is predicted to steadily increase in these watersheds during the wet season (Oct. -Mar.) and decrease in other parts of the year up through the 2080s. More weeks with extreme rain (>90th percentile) are expected. These weeks are predicted to increase the annual rates of cryptosporidiosis and giardiasis by approximately 16% by the 2080s corresponding to an increase of 55–136 additional cases per year depending upon the climate model used. The predicted increase in the number of waterborne illness cases are during the wet months. The range in future projections compared to historical monthly case counts typically differed by 10–20% across climate models but the direction of change was consistent for all models. Discussion If new water filtration measures had not been implemented in our study area in 2010–2015, the risk of cryptosporidiosis and giardiasis would have been expected to increase with climate change, particularly precipitation changes. In addition to the predicted increase in the frequency and intensity of extreme precipitation events, the frequency and length of wet and dry spells could also affect the risk of waterborne diseases as we observed in the historical period. These findings add to the growing evidence regarding the need to prepare water systems to manage and become resilient to climate change-related health risks. Background Climate change is increasing the number and intensity of extreme weather events in many parts of the world. Precipitation extremes have been linked to both outbreaks and sporadic cases of waterborne illness. We have previously shown a link between heavy rain and turbidity to population-level risk of sporadic cryptosporidiosis and giardiasis in a major Canadian urban population. The risk increased with 30 or more dry days in the 60 days preceding the week of extreme rain. The goal of this study was to investigate the change in cryptosporidiosis and giardiasis risk due to climate change, primarily change in extreme precipitation. Methods Cases of cryptosporidiosis and giardiasis were extracted from a reportable disease system (1997–2009). We used distributed lag non-linear Poisson regression models and projections of the exposure-outcome relationship to estimate future illness (2020–2099). The climate projections are derived from twelve statistically downscaled regional climate models. Relative Concentration Pathway 8.5 was used to project precipitation derived from daily gridded weather observation data (~ 6 × 10 km resolution) covering the central of three adjacent watersheds serving metropolitan Vancouver for the 2020s, 2040s, 2060s and 2080s. Results Precipitation is predicted to steadily increase in these watersheds during the wet season (Oct. -Mar.) and decrease in other parts of the year up through the 2080s. More weeks with extreme rain (>90th percentile) are expected. These weeks are predicted to increase the annual rates of cryptosporidiosis and giardiasis by approximately 16% by the 2080s corresponding to an increase of 55–136 additional cases per year depending upon the climate model used. The predicted increase in the number of waterborne illness cases are during the wet months. The range in future projections compared to historical monthly case counts typically differed by 10–20% across climate models but the direction of change was consistent for all models. Discussion If new water filtration measures had not been implemented in our study area in 2010–2015, the risk of cryptosporidiosis and giardiasis would have been expected to increase with climate change, particularly precipitation changes. In addition to the predicted increase in the frequency and intensity of extreme precipitation events, the frequency and length of wet and dry spells could also affect the risk of waterborne diseases as we observed in the historical period. These findings add to the growing evidence regarding the need to prepare water systems to manage and become resilient to climate change-related health risks. &nbsp

    Projected local rain events due to climate change and the impacts on waterborne diseases in Vancouver, British Columbia, Canada

    No full text
    Background: Climate change is increasing the number and intensity of extreme weather events in many parts of the world. Precipitation extremes have been linked to both outbreaks and sporadic cases of waterborne illness. We have previously shown a link between heavy rain and turbidity to population-level risk of sporadic cryptosporidiosis and giardiasis in a major Canadian urban population. The risk increased with 30 or more dry days in the 60 days preceding the week of extreme rain. The goal of this study was to investigate the change in cryptosporidiosis and giardiasis risk due to climate change, primarily change in extreme precipitation. Methods: Cases of cryptosporidiosis and giardiasis were extracted from a reportable disease system (1997–2009). We used distributed lag non-linear Poisson regression models and projections of the exposure-outcome relationship to estimate future illness (2020–2099). The climate projections are derived from twelve statistically downscaled regional climate models. Relative Concentration Pathway 8.5 was used to project precipitation derived from daily gridded weather observation data (~ 6 × 10 km resolution) covering the central of three adjacent watersheds serving metropolitan Vancouver for the 2020s, 2040s, 2060s and 2080s. Results: Precipitation is predicted to steadily increase in these watersheds during the wet season (Oct. -Mar.) and decrease in other parts of the year up through the 2080s. More weeks with extreme rain (>90th percentile) are expected. These weeks are predicted to increase the annual rates of cryptosporidiosis and giardiasis by approximately 16% by the 2080s corresponding to an increase of 55–136 additional cases per year depending upon the climate model used. The predicted increase in the number of waterborne illness cases are during the wet months. The range in future projections compared to historical monthly case counts typically differed by 10–20% across climate models but the direction of change was consistent for all models. Discussion: If new water filtration measures had not been implemented in our study area in 2010–2015, the risk of cryptosporidiosis and giardiasis would have been expected to increase with climate change, particularly precipitation changes. In addition to the predicted increase in the frequency and intensity of extreme precipitation events, the frequency and length of wet and dry spells could also affect the risk of waterborne diseases as we observed in the historical period. These findings add to the growing evidence regarding the need to prepare water systems to manage and become resilient to climate change-related health risks.Medicine, Faculty ofNon UBCPopulation and Public Health (SPPH), School ofReviewedFacult
    corecore