2,195 research outputs found

    On the structure of isothermal acoustic shocks under classical and artificial viscosity laws: Selected case studies

    Get PDF
    Assuming Newton's law of cooling, the propagation and structure of isothermal acoustic shocks are studied under four different viscosity laws. Employing both analytical and numerical methods, 1D traveling wave solutions for the velocity and density fields are derived and analyzed. For each viscosity law considered, expressions for both the shock thickness and the asymmetry metric are determined. And, to ensure that isothermal flow is achievable, upper bounds on the associated Mach number values are derived/computed using the isothermal version of the energy equation.Comment: 26 pages, 2 figures, journal articl

    Emergent universe in a Jordan-Brans-Dicke theory

    Full text link
    In this paper we study emergent universe model in the context of a self interacting Jordan-Brans-Dicke theory. The model presents a stable past eternal static solution which eventually enters a phase where the stability of this solution is broken leading to an inflationary period. We also establish constraints for the different parameters appearing in our model.Comment: 18 pages, 4 figures. Accepted for publication in JCA

    The Positive Rhinovirus/Enterovirus Detection and SARS-CoV-2 Persistence beyond the Acute Infection Phase: An Intra-Household Surveillance Study.

    Full text link
    We aimed to assess the duration of nasopharyngeal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA persistence in adults self-confined at home after acute infection; and to identify the associations of SARS-CoV-2 persistence with respiratory virus co-detection and infection transmission. A cross-sectional intra-household study was conducted in metropolitan Barcelona (Spain) during the time period of April to June 2020. Every adult who was the first family member reported as SARS-CoV-2-positive by reverse transcription polymerase chain reaction (RT-PCR) as well as their household child contacts had nasopharyngeal swabs tested by a targeted SARS-CoV-2 RT-PCR and a multiplex viral respiratory panel after a 15 day minimum time lag. Four-hundred and four households (404 adults and 708 children) were enrolled. SARS-CoV-2 RNA was detected in 137 (33.9%) adults and 84 (11.9%) children. Rhinovirus/Enterovirus (RV/EV) was commonly found (83.3%) in co-infection with SARS-CoV-2 in adults. The mean duration of SARS-CoV-2 RNA presence in adults' nasopharynx was 52 days (range 26-83 days). The persistence of SARS-CoV-2 was significantly associated with RV/EV co-infection (adjusted odds ratio (aOR) 9.31; 95% CI 2.57-33.80) and SARS-CoV-2 detection in child contacts (aOR 2.08; 95% CI 1.24-3.51). Prolonged nasopharyngeal SARS-CoV-2 RNA persistence beyond the acute infection phase was frequent in adults quarantined at home during the first epidemic wave; which was associated with RV/EV co-infection and could enhance intra-household infection transmission

    Total absorption gamma-ray spectroscopy study of the β-decay of 186Hg

    Get PDF
    7 pags., 9 figs., 1 tab.The Gamow-Teller strength distribution of the decay of Hg into Au has been determined for the first time using the total absorption gamma spectroscopy technique and has been compared with theoretical QRPA calculations using the SLy4 Skyrme force. The measured Gamow-Teller strength distribution and the half-life are described by mixing oblate and prolate configurations independently in the parent and daughter nuclei. In this theoretical framework the best description of the experimental beta strength is obtained with dominantly prolate components for both parent Hg and daughter Au. The approach also allowed us to determine an upper limit of the oblate component in the parent state. The complexity of the analysis required the development of a new approach in the analysis of the X-ray gated total absorption spectrum.This work was supported by Spanish Ministerio de Economía y Competitividad under grants FPA2011-24553, FPA2014-52823-C2-1-P, FPA2017-83946-C2-1-P, FPA2017-87568-P, Ministerio de Ciencia e Innovación grants PID2019-104714GB-C21 and RTI2018-098868-B-100, program Severo Ochoa (SEV-2014-0398), ENSAR (grant 262010) and by the European Union Horizon 2020 research and innovation programme under Grant Agreement No. 654002. S.E.A.O. thanks the support of CPAN Consolider-Ingenio 2010 Programme CSD2007-00042 grant. E.G. acknowledges support from TÜBITAK 2219 Abroad Research Fellowship Programme. R.B.C. acknowledges support by the Max-Planck-Partner group. Support from the technical staff and engineers of ISOLDE-CERN is acknowl- edged. W.G. acknowledges the support of STFC (UK) council grant ST/P005314/1. V.G. acknowledges the support of the National Science Center, Poland, under Contract No. 2019/35/D/ST2/02081. This work was also supported by the National Research, Development and Innovation Fund of Hungary, financed under the K18 funding scheme with Projects No. K 128729 and NN128072. P.S. acknowledges support from MCI/AEI/FEDER, UE (Spain) under grant PGC2018-093636-B-I0

    Repeat controlled human malaria infection of healthy UK adults with blood-stage plasmodium falciparum:Safety and parasite growth dynamics

    Get PDF
    In endemic settings it is known that natural malaria immunity is gradually acquired following repeated exposures. Here we sought to assess whether similar acquisition of blood-stage malaria immunity would occur following repeated parasite exposure by controlled human malaria infection (CHMI). We report the findings of repeat homologous blood-stage Plasmodium falciparum (3D7 clone) CHMI studies VAC063C (ClinicalTrials.gov NCT03906474) and VAC063 (ClinicalTrials.gov NCT02927145). In total, 24 healthy, unvaccinated, malaria-naïve UK adult participants underwent primary CHMI followed by drug treatment. Ten of these then underwent secondary CHMI in the same manner, and then six of these underwent a final tertiary CHMI. As with primary CHMI, malaria symptoms were common following secondary and tertiary infection, however, most resolved within a few days of treatment and there were no long term sequelae or serious adverse events related to CHMI. Despite detectable induction and boosting of anti-merozoite serum IgG antibody responses following each round of CHMI, there was no clear evidence of anti-parasite immunity (manifest as reduced parasite growth in vivo) conferred by repeated challenge with the homologous parasite in the majority of volunteers. However, three volunteers showed some variation in parasite growth dynamics in vivo following repeat CHMI that were either modest or short-lived. We also observed no major differences in clinical symptoms or laboratory markers of infection across the primary, secondary and tertiary challenges. However, there was a trend to more severe pyrexia after primary CHMI and the absence of a detectable transaminitis post-treatment following secondary and tertiary infection. We hypothesize that this could represent the initial induction of clinical immunity. Repeat homologous blood-stage CHMI is thus safe and provides a model with the potential to further the understanding of naturally acquired immunity to blood-stage infection in a highly controlled setting. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, identifier NCT03906474, NCT02927145

    Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    Get PDF
    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ

    Global gene expression profiling of oral cavity cancers suggests molecular heterogeneity within anatomic subsites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oral squamous cell carcinoma (OSCC) is a frequent neoplasm, which is usually aggressive and has unpredictable biological behavior and unfavorable prognosis. The comprehension of the molecular basis of this variability should lead to the development of targeted therapies as well as to improvements in specificity and sensitivity of diagnosis.</p> <p>Results</p> <p>Samples of primary OSCCs and their corresponding surgical margins were obtained from male patients during surgery and their gene expression profiles were screened using whole-genome microarray technology. Hierarchical clustering and Principal Components Analysis were used for data visualization and One-way Analysis of Variance was used to identify differentially expressed genes. Samples clustered mostly according to disease subsite, suggesting molecular heterogeneity within tumor stages. In order to corroborate our results, two publicly available datasets of microarray experiments were assessed. We found significant molecular differences between OSCC anatomic subsites concerning groups of genes presently or potentially important for drug development, including mRNA processing, cytoskeleton organization and biogenesis, metabolic process, cell cycle and apoptosis.</p> <p>Conclusion</p> <p>Our results corroborate literature data on molecular heterogeneity of OSCCs. Differences between disease subsites and among samples belonging to the same TNM class highlight the importance of gene expression-based classification and challenge the development of targeted therapies.</p

    Genome-Wide Discovery of Somatic Regulatory Variants in Diffuse Large B-Cell Lymphoma

    Get PDF
    Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer originating from mature B-cells. Prognosis is strongly associated with molecular subgroup, although the driver mutations that distinguish the two main subgroups remain poorly defined. Through an integrative analysis of whole genomes, exomes, and transcriptomes, we have uncovered genes and non-coding loci that are commonly mutated in DLBCL. Our analysis has identified novel cis-regulatory sites, and implicates recurrent mutations in the 3′ UTR of NFKBIZ as a novel mechanism of oncogene deregulation and NF-κB pathway activation in the activated B-cell (ABC) subgroup. Small amplifications associated with over-expression of FCGR2B (the Fcγ receptor protein IIB), primarily in the germinal centre B-cell (GCB) subgroup, correlate with poor patient outcomes suggestive of a novel oncogene. These results expand the list of subgroup driver mutations that may facilitate implementation of improved diagnostic assays and could offer new avenues for the development of targeted therapeutics.&nbsp
    corecore