745 research outputs found

    PEMBATALAN PERKAWINAN KARENA ADANYA PEMALSUAN IDENTITAS DITINJAU DARI PASAL 27 AYAT UU PERKAWINAN Studi pada Putusan Nomor 0257/Pdt.G/2021/PA Sr

    Get PDF
    Hukum perkawinan di Indonesia belum berjalan sebagaimana mestinya. Perkawinan yang diharapkan berlangsung sesuai dengan syarat yang berlaku sehingga perkawinan sah, namun dalam realitanya ada penyimpangan/ pelanggaran dari aturan hukum yang berlaku sehingga perkawinan menjadi tidak sah. Adanya kasus pemalsuan identitas dalam perkawinan perlu mendapatkan perhatian serius karena menimbulkan akibat hukum. Penelitian ini bertujuan untuk mendeskripsikan dasar pertimbangan hakim dalam memutus pembatalan perkawinan karena adanya pemalsuan identitas, akibat hukum, dan upaya untuk mencegah pemalsuan identitas dalam perkawinan. Penelitian ini menggunakan pendekatan undang-undang (statute approach) dengan spesifikasi deskriptif analitis untuk Putusan Nomor 0257/Pdt.G/2021/PA Sr. Data penelitian menggunakan bahan hukum primer, sekunder dan tersier, yang kemudian dianalisis menggunakan analisis kualitatif. Hasil penelitian adalah (1) Dasar pertimbangan hakim dalam memutus pembatalan perkawinan karena adanya pemalsuan identitas, meliputi pertimbangan hukum, filosofis dan sosiologis. Pertimbangan hukum karena terbukti terjadi pemalsuan identitas dalam perkawinan menurut Undang-Undang Perkawinan dan Kompilasi Hukum Islam. Pertimbangan filosofis karena hak-hak individu dalam perkawinan dilindungi oleh undang-undang. Pertimbangan sosiologis karena mencegah akibat hukum yang dapat ditimbulkan bilamana perkawinan tetap dilanjutkan, (2) Akibat hukum atas pembatalan perkawinan karena adanya pemalsuan identitas adalah kedudukan anak, harta perkawinan, dan pihak ketiga, (3) Upaya mencegah pemalsuan identitas dalam perkawinan adalah mengoptimalkan peran KUA dengan meningkatkan kesadaran perundang-undangan tentang perkawinan secara matang dan penerapannya, serta penerapan sanksi bagi pihak-pihak yang terlibat dalam melakukan pemalsuan identitas dalam perkawina

    Utility of synovial biopsy

    Get PDF
    Synovial biopsies, gained either by blind needle biopsy or minimally invasive arthroscopy, offer additional information in certain clinical situations where routine assessment has not permitted a certain diagnosis. In research settings, synovial histology and modern applications of molecular biology increase our insight into pathogenesis and enable responses to treatment with new therapeutic agents to be assessed directly at the pathophysiological level. This review focuses on the diagnostic usefulness of synovial biopsies in the light of actual developments

    IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis

    Get PDF
    The origin and role of IL-17, a T-cell derived cytokine, in cartilage and bone destruction during rheumatoid arthritis (RA) remain to be clarified. In human ex vivo models, addition of IL-17 enhanced IL-6 production and collagen destruction, and inhibited collagen synthesis by RA synovium explants. On mouse cartilage, IL-17 enhanced cartilage proteoglycan loss and inhibited its synthesis. On human RA bone explants, IL-17 also increased bone resorption and decreased formation. Addition of IL-1 in these conditions increased the effect of IL-17. Blocking of bone-derived endogenous IL-17 with specific inhibitors resulted in a protective inhibition of bone destruction. Conversely, intra-articular administration of IL-17 into a normal mouse joint induced cartilage degradation. In conclusion, the contribution of IL-17 derived from synovium and bone marrow T cells to joint destruction suggests the control of IL-17 for the treatment of RA

    Advances in understanding molecular regulation of innate immune memory

    Get PDF
    © 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).The epigenetic and functional reprogramming of immune genes during induction of trained immunity is accompanied by the metabolic rewiring of cellular state. This memory is induced in the hematopoietic niche and propagated to daughter cells, generating epigenetically and metabolically reprogrammed innate immune cells that are greatly enhanced in their capacity to resolve inflammation. In particular, these cells show accumulation of H3K4me3 and H3K27Ac epigenetic marks on multiple immune gene promoters and associated enhancers. However, the mechanism governing how these epigenetic marks accumulate at discrete immune gene loci has been poorly understood, until now. Here, we discuss some recent advances in the regulation of trained immunity, with a particular focus on the mechanistic role of a novel class of long non-coding RNAs in the establishment of epigenetic marks on trained immune gene promoters.M.G.N. was supported by a Spinoza Grant of the Netherlands Organization for Scientific Research. L.A.B.J. was supported by a Competitiveness Operational Program grant of the Romanian Ministry of European Funds (HINT, ID P_37_762; MySMIS 103587). M.M.M. research is supported by a Department of Science and Technology Centre of Competence Grant, an SA Medical Research Council SHIP grant, and a CSIR Parliamentary Grant, all to M.M.M, and M.M.M. is a Chan Zuckerberg Investigator of the Chan Zuckerberg Initiative.info:eu-repo/semantics/publishedVersio

    Innate Immune Recognition of Mycobacterium tuberculosis

    Get PDF
    Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a major health problem, with 10 million new cases diagnosed each year. Innate immunity plays an important role in the host defense against M. tuberculosis, and the first step in this process is recognition of MTB by cells of the innate immune system. Several classes of pattern recognition receptors (PPRs) are involved in the recognition of M. tuberculosis, including Toll-like receptors (TLRs), C-type lectin receptors (CLRs), and Nod-like receptors (NLRs). Among the TLR family, TLR2, TLR4, and TLR9 and their adaptor molecule MyD88 play the most prominent roles in the initiation of the immune response against tuberculosis. In addition to TLRs, other PRRs such as NOD2, Dectin-1, Mannose receptor, and DC-SIGN are also involved in the recognition of M. tuberculosis. Human epidemiological studies revealed that genetic variation in genes encoding for PRRs and downstream signaling products influence disease susceptibility, severity, and outcome. More insight into PRRs and the recognition of mycobacteria, combined with immunogenetic studies in TB patients, does not only lead to a better understanding of the pathogenesis of tuberculosis but also may contribute to the design of novel immunotherapeutic strategies

    Trained immunity or tolerance : opposing functional programs induced in human monocytes after engagement of various pattern recognition receptors

    Get PDF
    Article Accepted Date: 29 January 2014. ACKNOWLEDGMENTS D.C.I. received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement HEALTH-2010-260338 (“Fungi in the setting of inflammation, allergy and autoimmune diseases: translating basic science into clinical practices” [ALLFUN]) (awarded to M.G.N.). M.G.N. and J.Q. were supported by a Vici grant of the Netherlands Organization of Scientific Research (awarded to M.G.N.). This work was supported, in part, by National Institutes of Health grant GM53522 to D.L.W. N.A.R.G. was supported by the Wellcome Trust.Peer reviewedPublisher PD

    Identification of Discriminating Metabolic Pathways and Metabolites in Human PBMCs Stimulated by Various Pathogenic Agents

    Get PDF
    Immunity and cellular metabolism are tightly interconnected but it is not clear whether different pathogens elicit specific metabolic responses. To address this issue, we studied differential metabolic regulation in peripheral blood mononuclear cells (PBMCs) of healthy volunteers challenged by Candida albicans, Borrelia burgdorferi, lipopolysaccharide, and Mycobacterium tuberculosis in vitro. By integrating gene expression data of stimulated PBMCs of healthy individuals with the KEGG pathways, we identified both common and pathogen-specific regulated pathways depending on the time of incubation. At 4 h of incubation, pathogenic agents inhibited expression of genes involved in both the glycolysis and oxidative phosphorylation pathways. In contrast, at 24 h of incubation, particularly glycolysis was enhanced while genes involved in oxidative phosphorylation remained unaltered in the PBMCs. In general, differential gene expression was less pronounced at 4 h compared to 24 h of incubation. KEGG pathway analysis allowed differentiation between effects induced by Candida and bacterial stimuli. Application of genome-scale metabolic model further generated a Candida-specific set of 103 reporter metabolites (e.g., desmosterol) that might serve as biomarkers discriminating Candida stimulated PBMCs from bacteria-stimuated PBMCs. Our analysis also identified a set of 49 metabolites that allowed discrimination between the effects of Borrelia burgdorferi, lipopolysaccharide and Mycobacterium tuberculosis. We conclude that analysis of pathogen-induced effects on PBMCs by a combination of KEGG pathways and genome-scale metabolic model provides deep insight in the metabolic changes coupled to host defense

    IL-17 produced by Paneth cells drives TNF-induced shock

    Get PDF
    Tumor necrosis factor (TNF) has very potent antitumor activity, but it also provokes a systemic inflammatory response syndrome that leads to shock, organ failure, and death. Here, we demonstrate that interleukin (IL)-17, a proinflammatory cytokine known to be produced mainly by activated T cells, has a critical role in this process. Antiserum against IL-17 or deletion of Il17r protected mice against a lethal TNF challenge. Serum levels of TNF-induced IL-6 and nitric oxide metabolites were significantly reduced in mice deficient in the IL-17R. TNF-induced leukocyte influx in the small intestine was reduced, and there was no injury to the small intestine. Surprisingly, electron microscopy showed that IL-17 was constitutively present in Paneth cells of the crypts. Upon TNF challenge, the intracellular pool of IL-17 in these cells was drastically reduced, suggesting rapid release of IL-17 from the granules of Paneth cells. Our findings assign a novel role for IL-17 in an acute inflammation and identify Paneth cells as a source of the IL-17 that plays a role in this process. These data indicate that innate immune cytokine responses in the local mucosa may participate in rapidly amplifying responses to systemic inflammatory challenges

    Protection against cartilage and bone destruction by systemic interleukin-4 treatment in established murine type II collagen-induced arthritis

    Get PDF
    INTRODUCTION: Rheumatoid arthritis (RA) is associated with an increased production of a range of cytokines including tumour necrosis factor (TNF)-α and interleukin (IL)-1, which display potent proinflammatory actions that are thought to contribute to the pathogenesis of the disease. Although TNF-α seems to be the major cytokine in the inflammatory process, IL-1 is the key mediator with regard to cartilage and bone destruction. Apart from direct blockade of IL-1/TNF, regulation can be exerted at the level of modulatory cytokines such as IL-4 and IL-10. IL-4 is a pleiotropic T-cell derived cytokine that can exert either suppressive or stimulatory effects on different cell types, and was originally identified as a B-cell growth factor and regulator of humoral immune pathways. IL-4 is produced by activated CD4(+) T cells and it promotes the maturation of Th2 cells. IL-4 stimulates proliferation, differentiation and activation of several cell types, including fibroblasts, endothelial cells and epithelial cells. IL-4 is also known to be a potent anti-inflammatory cytokine that acts by inhibiting the synthesis of proinflammatory cytokines such as IL-1, TNF-α, IL-6, IL-8 and IL-12 by macrophages and monocytes. Moreover, IL-4 stimulates the synthesis of several cytokine inhibitors such as interleukin-1 receptor antagonist (IL-1Ra), soluble IL-1-receptor type II and TNF receptors IL-4 suppresses metalloproteinase production and stimulates tissue inhibitor of metalloproteinase-1 production in human mononuclear phagocytes and cartilage explants, indicating a protective effect of IL-4 towards extracellular matrix degradation. Furthermore, IL-4 inhibits both osteoclast activity and survival, and thereby blocks bone resorption in vitro. Of great importance is that IL-4 could not be detected in synovial fluid or in tissues. This absence of IL-4 in the joint probably contributes to the disturbance in the Th1/Th2 balance in chronic RA. Collagen-induced arthritis (CIA) is a widely used model of arthritis that displays several features of human RA. Recently it was demonstrated that the onset of CIA is under stringent control of IL-4 and IL-10. Furthermore, it was demonstrated that exposure to IL-4 during the immunization stage reduced onset and severity of CIA. However, after cessation of IL-4 treatment disease expression increased to control values. AIMS: Because it was reported that IL-4 suppresses several proinflammatory cytokines and matrix degrading enzymes and upregulates inhibitors of both cytokines and catabolic enzymes, we investigated the tissue protective effect of systemic IL-4 treatment using established murine CIA as a model. Potential synergy of low dosages of anti-inflammatory glucocorticosteroids and IL-4 was also evaluated. METHODS: DBA-1J/Bom mice were immunized with bovine type II collagen and boosted at day 21. Mice with established CIA were selected at day 28 after immunization and treated for days with IL-4, prednisolone, or combinations of prednisolone and IL-4. Arthritis score was monitored visually. Joint pathology was evaluated by histology, radiology and serum cartilage oligomeric matrix protein (COMP). In addition, serum levels of IL-1Ra and anticollagen antibodies were determined. RESULTS: Treatment of established CIA with IL-4 (1 μg/day) resulted in suppression of disease activity as depicted in Figure 1. Of great interest is that, although 1 μg/day IL-4 had only a moderate effect on the inflammatory component of the disease activity, it strongly reduced cartilage pathology, as determined by histological examination (Fig. 1). Moreover, serum COMP levels were significantly reduced, confirming decreased cartilage involvement. In addition, both histological and radiological analysis showed that bone destruction was prevented (Fig. 1). Systemic IL-4 administration increased serum IL-1Ra levels and reduced anticollagen type II antibody levels. Treatment with low-dose IL-4 (0.1 μg/day) was ineffective in suppressing disease score, serum COMP or joint destruction. Synergistic suppression of both arthritis severity and COMP levels was noted when low-dose IL-4 was combined with prednisolone (0.05 mg/kg/day), however, which in itself was not effective. DISCUSSION: In the present study, we demonstrate that systemic IL-4 treatment ameliorates disease progression of established CIA. Although clinical disease progression was only arrested and not reversed, clear protection against cartilage and bone destruction was noted. This is in accord with findings in both human RA and animal models of RA that show that inflammation and tissue destruction sometimes are uncoupled processes. Of great importance is that, although inflammation was still present, strong reduction in serum COMP was found after exposure to IL-4. This indicated that serum COMP levels reflected cartilage damage, although a limited contribution of the inflamed synovium cannot be excluded. Increased serum IL-1Ra level (twofold) was found after systemic treatment with IL-4, but it is not likely that this could explain the suppression of CIA. We and others have reported that high dosages of IL-1Ra are needed for marked suppression of CIA. As reported previously, lower dosages of IL-4 did not reduce clinical disease severity of established CIA. Of importance is that combined treatment of low dosages of IL-4 and IL-10 appeared to have more potent anti-inflammatory effects, and markedly protected against cartilage destruction. Improved anti-inflammatory effect was achieved with IL-4/prednisolone treatment. In addition, synergistic effects were found for the reduction of cartilage and bone destruction. This indicates that systemic IL-4/prednisolone treatment may provide a cartilage and bone protective therapy for human RA

    No Signs of Neuroinflammation in Women With Chronic Fatigue Syndrome or Q Fever Fatigue Syndrome Using the TSPO Ligand [11C]-PK11195

    Get PDF
    BACKGROUND AND OBJECTIVES: The pathophysiology of chronic fatigue syndrome (CFS) and Q fever fatigue syndrome (QFS) remains elusive. Recent data suggest a role for neuroinflammation as defined by increased expression of translocator protein (TSPO). In the present study, we investigated whether there are signs of neuroinflammation in female patients with CFS and QFS compared with healthy women, using PET with the TSPO ligand (11)C-(R)-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carbox-amide ([(11)C]-PK11195). METHODS: The study population consisted of patients with CFS (n = 9), patients with QFS (n = 10), and healthy subjects (HSs) (n = 9). All subjects were women, matched for age (±5 years) and neighborhood, aged between 18 and 59 years, who did not use any medication other than paracetamol or oral contraceptives, and were not vaccinated in the last 6 months. None of the subjects reported substance abuse in the past 3 months or reported signs of underlying psychiatric disease on the Mini-International Neuropsychiatric Interview. All subjects underwent a [(11)C]-PK11195 PET scan, and the [(11)C]-PK11195 binding potential (BP(ND)) was calculated. RESULTS: No statistically significant differences in BP(ND) were found for patients with CFS or patients with QFS compared with HSs. BP(ND) of [(11)C]-PK11195 correlated with symptom severity scores in patients with QFS, but a negative correlation was found in patients with CFS. DISCUSSION: In contrast to what was previously reported for CFS, we found no significant difference in BP(ND) of [(11)C]-PK11195 when comparing patients with CFS or QFS with healthy neighborhood controls. In this small series, we were unable to find signs of neuroinflammation in patients with CFS and QFS. TRIAL REGISTRATION INFORMATION: EudraCT number 2014-004448-37
    corecore