1,426 research outputs found

    Fast Photon Detection for Particle Identification with COMPASS RICH-1

    Get PDF
    Particle identification at high rates is an important challenge for many current and future high-energy physics experiments. The upgrade of the COMPASS RICH-1 detector requires a new technique for Cherenkov photon detection at count rates of several 10610^6 per channel in the central detector region, and a read-out system allowing for trigger rates of up to 100 kHz. To cope with these requirements, the photon detectors in the central region have been replaced with the detection system described in this paper. In the peripheral regions, the existing multi-wire proportional chambers with CsI photocathode are now read out via a new system employing APV pre-amplifiers and flash ADC chips. The new detection system consists of multi-anode photomultiplier tubes (MAPMT) and fast read-out electronics based on the MAD4 discriminator and the F1-TDC chip. The RICH-1 is in operation in its upgraded version for the 2006 CERN SPS run. We present the photon detection design, constructive aspects and the first Cherenkov light in the detector.Comment: Proceedings of the Imaging 2006 conference, Stockholm, Sweden, 27-30 June 2006, 5 pages, 6 figures, to appear in NIM A; corrected typo in caption of Fig.

    Fast photon detection for the COMPASS RICH detector

    Get PDF
    The COMPASS experiment at the SPS accelerator at CERN uses a large scale Ring Imaging CHerenkov detector (RICH) to identify pions, kaons and protons in a wide momentum range. For the data taking in 2006, the COMPASS RICH has been upgraded in the central photon detection area (25% of the surface) with a new technology to detect Cherenkov photons at very high count rates of several 10^6 per second and channel and a new dead-time free read-out system, which allows trigger rates up to 100 kHz. The Cherenkov photons are detected by an array of 576 visible and ultra-violet sensitive multi-anode photomultipliers with 16 channels each. The upgraded detector showed an excellent performance during the 2006 data taking.Comment: Proceeding of the IPRD06 conference (Siena, Okt. 06

    The Fast Read-out System for the MAPMTs of COMPASS RICH-1

    Full text link
    A fast readout system for the upgrade of the COMPASS RICH detector has been developed and successfully used for data taking in 2006 and 2007. The new readout system for the multi-anode PMTs in the central part of the photon detector of the RICH is based on the high-sensitivity MAD4 preamplifier-discriminator and the dead-time free F1-TDC chip characterized by high-resolution. The readout electronics has been designed taking into account the high photon flux in the central part of the detector and the requirement to run at high trigger rates of up to 100 kHz with negligible dead-time. The system is designed as a very compact setup and is mounted directly behind the multi-anode photomultipliers. The data are digitized on the frontend boards and transferred via optical links to the readout system. The read-out electronics system is described in detail together with its measured performances.Comment: Proceeding of RICH2007 Conference, Trieste, Oct. 2007. v2: minor change

    Intracellular cytokine staining and flow cytometry: Considerations for application in clinical trials of novel tuberculosis vaccines

    Get PDF
    Intracellular cytokine staining combined with flow cytometry is one of a number of assays designed to assess T-cell immune responses. It has the specific advantage of enabling the simultaneous assessment of multiple phenotypic, differentiation and functional parameters pertaining to responding T-cells, most notably, the expression of multiple effector cytokines. These attributes make the technique particularly suitable for the assessment of T-cell immune responses induced by novel tuberculosis vaccines in clinical trials. However, depending upon the particular nature of a given vaccine and trial setting, there are approaches that may be taken at different stages of the assay that are more suitable than other alternatives. In this paper, the Tuberculosis Vaccine Initiative (TBVI) TB Biomarker Working group reports on efforts to assess the conditions that will determine when particular assay approaches should be employed. We have found that choices relating to the use of fresh whole blood or peripheral blood mononuclear cells (PBMC) and frozen PBMC; use of serum-containing or serum-free medium; length of stimulation period and use of co-stimulatory antibodies can all affect the sensitivity of intracellular cytokine assays. In the case of sample material, frozen PBMC, despite some loss of sensitivity, may be more advantageous for batch analysis. We also recommend that for multi-site studies, common antibody panels, gating strategies and analysis approaches should be employed for better comparability

    Longitudinal double spin asymmetries in single hadron quasi-real photoproduction at high pTp_T

    Get PDF
    We measured the longitudinal double spin asymmetries ALLA_{LL} for single hadron muo-production off protons and deuterons at photon virtuality Q2Q^2 < 1(GeV/c\it c)2^2 for transverse hadron momenta pTp_T in the range 0.7 GeV/c\it c to 4 GeV/c\it c . They were determined using COMPASS data taken with a polarised muon beam of 160 GeV/c\it c or 200 GeV/c\it c impinging on polarised 6LiD\mathrm{{}^6LiD} or NH3\mathrm{NH_3} targets. The experimental asymmetries are compared to next-to-leading order pQCD calculations, and are sensitive to the gluon polarisation ΔG\Delta G inside the nucleon in the range of the nucleon momentum fraction carried by gluons 0.05<xg<0.20.05 < x_g < 0.2

    Thyrotrophin and thyroxine support immune homeostasis in humans

    Get PDF
    The endocrine and the immune systems interact by sharing receptors for hormones and cytokines, cross-control and feedback mechanisms. To date, no comprehensive study has assessed the impact of thyroid hormones on immune homeostasis. By studying immune phenotype (cell populations, antibody concentrations, circulating cytokines, adipokines and acute-phase proteins, monocyte-platelet interactions and cytokine production capacity) in two large independent cohorts of healthy volunteers of Western European descent from the Human Functional Genomics Project (500FG and 300BCG cohorts), we identified a crucial role of the thyroid hormone thyroxin (T4) and thyroid-stimulating hormone (TSH) on the homeostasis of lymphocyte populations. TSH concentrations were strongly associated with multiple populations of both effector and regulatory T cells, whereas B-cell populations were significantly associated with free T4 (fT4). In contrast, fT4 and TSH had little impact on myeloid cell populations and cytokine production capacity. Mendelian randomization further supported the role of fT4 for lymphocyte homeostasis. Subsequently, using a genomics approach, we identified genetic variants that influence both fT4 and TSH concentrations and immune responses, and gene set enrichment pathway analysis showed enrichment of fT4-affected gene expression in B-cell function pathways, including the CD40 pathway, further supporting the importance of fT4 in the regulation of B-cell function. In conclusion, we show that thyroid function controls the homeostasis of the lymphoid cell compartment. These findings improve our understanding of the immune responses and open the door for exploring and understanding the role of thyroid hormones in the lymphocyte function during disease
    • …
    corecore