13 research outputs found

    Fatty acids prevent Hypoxia-Inducible Factor 1α signalling in type 2 diabetes

    Get PDF
    SUMMARYHypoxia-inducible factor (HIF)-1ais essential following a myocardial infarction (MI), and diabetic patients havepoorer prognosis post-MI. Could HIF-1aactivation be abnormal in the diabetic heart, and could metabolism becausing this? Diabetic hearts had decreased HIF-1aprotein following ischemia, and insulin-resistant cardio-myocytes had decreased HIF-1a-mediated signaling and adaptation to hypoxia. This was due to elevated fattyacid (FA) metabolism preventing HIF-1aprotein stabilization. FAs exerted their effect by decreasing succinateconcentrations, a HIF-1aactivator that inhibits the regulatory HIF hydroxylase enzymes. In vivo and in vitropharmacological HIF hydroxylase inhibition restored HIF-1aaccumulation and improved post-ischemic func-tional recovery in diabetes

    Involvement of atypical protein kinase C in the regulation of cardiac glucose and long-chain fatty acid uptake

    Get PDF
    Aim: The signaling pathways involved in the regulation of cardiac GLUT4 translocation/glucose uptake and CD36 translocation/ long-chain fatty acid uptake are not fully understood. We compared in heart/muscle-specific PKC-λ knockout mice the roles of atypical PKCs (PKC-ζ and PKC-λ) in regulating cardiac glucose and fatty acid uptake. Results: Neither insulin-stimulated nor AMPK-mediated glucose and fatty acid uptake were inhibited upon genetic PKC-λ ablation in cardiomyocytes. In contrast, myristoylated PKC-ζ pseudosubstrate inhibited both insulin-stimulated and AMPK-mediated glucose and fatty acid uptake by >80% in both wild-type and PKC-λ-knockout cardiomyocytes. In PKC-λ knockout cardiomyocytes, PKC-ζ is the sole remaining atypical PKC isoform, and its expression level is not different from wild-type cardiomyocytes, in which it contributes to 29% and 17% of total atypical PKC expression and phosphorylation, respectively. Conclusion: Taken together, atypical PKCs are necessary for insulin-stimulated and AMPK-mediated glucose uptake into the heart, as well as for insulin-stimulated and AMPK-mediated fatty acid uptake. However, the residual PKC-ζ activity in PKC-λ-knockout cardiomyocytes is sufficient to allow optimal stimulation of glucose and fatty acid uptake, indicating that atypical PKCs are necessary but not rate-limiting in the regulation of cardiac substrate uptake and that PKC-λ and PKC-ζ have interchangeable functions in these processes

    Fatty acid transport and transporters in muscle are critically regulated by Akt2

    Get PDF
    AbstractMuscle contains various fatty acid transporters (CD36, FABPpm, FATP1, FATP4). Physiological stimuli (insulin, contraction) induce the translocation of all four transporters to the sarcolemma to enhance fatty acid uptake similarly to glucose uptake stimulation via glucose transporter-4 (GLUT4) translocation. Akt2 mediates insulin-induced, but not contraction-induced, GLUT4 translocation, but its role in muscle fatty acid transporter translocation is unknown. In muscle from Akt2-knockout mice, we observed that Akt2 is critically involved in both insulin-induced and contraction-induced fatty acid transport and translocation of fatty acid translocase/CD36 (CD36) and FATP1, but not of translocation of fatty acid-binding protein (FABPpm) and FATP4. Instead, Akt2 mediates intracellular retention of both latter transporters. Collectively, our observations reveal novel complexities in signaling mechanisms regulating the translocation of fatty acid transporters in muscle

    AntagomiR-103 and -107 Treatment Affects Cardiac Function and Metabolism

    No full text
    MicroRNA-103/107 regulate systemic glucose metabolism and insulin sensitivity. For this reason, inhibitory strategies for these microRNAs are currently being tested in clinical trials. Given the high metabolic demands of the heart and the abundant cardiac expression of miR-103/107, we questioned whether antagomiR-mediated inhibition of miR-103/107 in C57BL/6J mice impacts on cardiac function. Notably, fractional shortening decreased after 6 weeks of antagomiR-103 and -107 treatment. This was paralleled by a prolonged systolic radial and circumferential time to peak and by a decreased global strain rate. Histology and electron microscopy showed reduced cardiomyocyte area and decreased mitochondrial volume and mitochondrial cristae density following antagomiR-103 and -107. In line, antagomiR-103 and -107 treatment decreased mitochondrial OXPHOS complexes’ protein levels compared to scrambled, as assessed by mass spectrometry-based label-free quantitative proteomics. MiR-103/107 inhibition in primary cardiomyocytes did not affect glycolysis rates, but it decreased mitochondrial reserve capacity, reduced mitochondrial membrane potential, and altered mitochondrial network morphology, as assessed by live-cell imaging. Our data indicate that antagomiR-103 and -107 decrease cardiac function, cardiomyocyte size, and mitochondrial oxidative capacity in the absence of pathological stimuli. These data raise concern about the possible cardiac implications of the systemic use of antagomiR-103 and -107 in the clinical setting, and careful cardiac phenotyping within ongoing trials is highly recommended. Keywords: Cardiomyocyte, cardiac, microRNA, miR-103, miR-107, antagomiR, mitochondria, metabolism, mass spectrometry, electron microscop

    A NRF2/beta3-adrenoreceptor axis drives a sustained antioxidant and metabolic rewiring through the pentose-phosphate pathway to alleviate cardiac stress

    No full text
    Background: Cardiac β3-adrenergic receptors (β3AR) are upregulated in diseased hearts and mediate antithetic effects to those of β1AR and β2AR. β3AR agonists were recently shown to protect from myocardial remodeling in preclinical studies and to improve systolic function in patients with severe heart failure. The underlying mechanisms, however, remain elusive. Methods: To dissect functional, transcriptional and metabolic effects, hearts and isolated ventricular myocytes from mice harboring a moderate, cardiac-specific expression of a human ADRB3 transgene (β3AR-Tg) and subjected to transverse aortic constriction (TAC) were assessed using echocardiography, RNAseq, PET scan, metabolomics, seahorse and metabolic flux analysis. Subsequently, signaling and metabolic pathways were investigated further in vivo in β3AR-Tg and in vitro in neonatal rat ventricular myocytes adenovirally infected to express β3AR and subjected to neurohormonal stress. These results were completed with an analysis of single nucleus RNAseq data from human cardiac myocytes from heart failure patients. Results: Compared with WT littermate, β3AR-Tg mice were protected from hypertrophy after transaortic constriction (TAC), while systolic function was preserved. β3AR-expressing hearts displayed enhanced myocardial glucose uptake under stress in absence of increased lactate levels. Instead, metabolomic and metabolic flux analyses in stressed hearts revealed an increase in intermediates of the Pentose-Phosphate Pathway (PPP) in β3AR-Tg, an alternative route of glucose utilization, paralleled with increased transcript levels of NADPH-producing and rate-limiting enzymes of the PPP, without fueling the hexosamine metabolism. The ensuing increased content of NADPH and of reduced glutathione decreased myocyte oxidant stress, while downstream oxidative metabolism assessed by oxygen consumption was preserved with higher glucose oxidation in β3ARTg post-TAC compared to WT, together with increased mitochondrial biogenesis. Unbiased transcriptomics and pathway analysis identified NRF2 (NFE2L2) as upstream transcription factor which was functionally verified in β3AR- expressing cardiac myocytes where its translocation and nuclear activity was dependent on β3AR activation of nitric-oxide synthase (NOS) NO production. Conclusion: Moderate expression of cardiac β3AR, at levels observed in human cardiac myocardium, exerts antioxidant effects through activation of the PPP and NRF2 pathway, thereby preserving myocardial oxidative metabolism, function and integrity under pathophysiological stress
    corecore