2,449 research outputs found

    Two fast X-ray transients in archival Chandra data

    Get PDF
    We present the discovery of two new X-ray transients in archival Chandra data. The first transient, XRT 110103, occurred in January 2011 and shows a sharp rise of at least three orders of magnitude in count rate in less than 10 s, a flat peak for about 20 s and decays by two orders of magnitude in the next 60 s. We find no optical or infrared counterpart to this event in preexisting survey data or in an observation taken by the SIRIUS instrument at the Infrared Survey Facility 2.1 yr after the transient, providing limiting magnitudes of J>18.1, H>17.6 and Ks>16.3. This event shows similarities to the transient previously reported in Jonker et al. which was interpreted as the possible tidal disruption of a white dwarf by an intermediate mass black hole. We discuss the possibility that these transients originate from the same type of event. If we assume these events are related a rough estimate of the rates gives 1.4*10^5 per year over the whole sky with a peak 0.3-7 keV X-ray flux greater than 2*10^-10 erg cm^-2 s^-1 . The second transient, XRT 120830, occurred in August 2012 and shows a rise of at least three orders of magnitude in count rate and a subsequent decay of around one order of magnitude all within 10 s, followed by a slower quasi-exponential decay over the remaining 30 ks of the observation. We detect a likely infrared counterpart with magnitudes J=16.70+/-0.06, H=15.92+/-0.04 and Ks=15.37+/-0.06 which shows an average proper motion of 74+/-19 milliarcsec per year compared to archival 2MASS observations. The JHKs magnitudes, proper motion and X-ray flux of XRT 120830 are consistent with a bright flare from a nearby late M or early L dwarf.Comment: Accepted for publication in MNRAS, 6 pages, 5 figure

    Time-resolved X-Shooter spectra and RXTE light curves of the ultra-compact X-ray binary candidate 4U 0614+091

    Full text link
    In this paper we present X-Shooter time resolved spectroscopy and RXTE PCA light curves of the ultra-compact X-ray binary candidate 4U 0614+091. The X-Shooter data are compared to the GMOS data analyzed previously by Nelemans et al. (2004). We confirm the presence of C III and O II emission features at ~ 4650 {\AA} and ~ 5000 {\AA}. The emission lines do not show evident Doppler shifts that could be attributed to the motion of the donor star/hot spot around the center of mass of the binary. We note a weak periodic signal in the red-wing/blue-wing flux ratio of the emission feature at ~ 4650 {\AA}. The signal occurs at P = 30.23 +/- 0.03 min in the X-Shooter and at P = 30.468 +/- 0.006 min in the GMOS spectra when the source was in the low/hard state. Due to aliasing effects the period in the GMOS and X-Shooter data could well be the same. We deem it likely that the orbital period is thus close to 30 min, however, as several photometric periods have been reported for this source in the literature already, further confirmation of the 30 min period is warranted. We compare the surface area of the donor star and the disc of 4U 0614+091 with the surface area of the donor star and the disc in typical hydrogen-rich low-mass X-ray binaries and the class of AM Canum Venaticorum stars and argue that the optical emission in 4U 0614+091 is likely dominated by the disc emission. Additionally, we search for periodic signals in all the publicly available RXTE PCA light curves of 4U 0614+091 which could be associated with the orbital period of this source. A modulation at the orbital period with an amplitude of ~ 10% such as those that have been found in other ultra-compact X-ray binaries (4U 0513-40, 4U 1820-30) is not present in 4U 0614+091.Comment: Accepted for publication in MNRAS, 11 pages, 7 figure

    A continuous Flaring- to Normal-branch transition in Sco X-1

    Full text link
    We report the first resolved rapid transition from a Flaring Branch Oscillation to a Normal Branch Oscillation in the RXTE data of the Z source Sco X-1. The transition took place on a time scale of ~100 seconds and was clearly associated to the Normal Branch-Flaring Branch vertex in the color-color diagram. We discuss the results in the context of the possible association of the Normal Branch Oscillation with other oscillations known both in Neutron-Star and Black-Hole systems, concentrating on the similarities with the narrow 4-6 Hz oscillations observed at high flux in Black-Hole Candidates.Comment: 5 pages, 4 figures, accepted for publication in Astronomy & Astrophysic

    New ephemeris of the ADC source 2A 1822-371: a stable orbital-period derivative over 30 years

    Get PDF
    We report on a timing of the eclipse arrival times of the low mass X-ray binary and X-ray pulsar 2A 1822-371 performed using all available observations of the Proportional Counter Array on board the Rossi X-ray Timing Explorer, XMM-Newton pn, and Chandra. These observations span the years from 1996 to 2008. Combining these eclipse arrival time measurements with those already available covering the period from 1977 to 1996, we obtain an orbital solution valid for more than thirty years. The time delays calculated with respect to a constant orbital period model show a clear parabolic trend, implying that the orbital period in this source constantly increases with time at a rate P˙orb=1.50(7)×1010\dot P_orb = 1.50(7) \times 10^{-10} s/s. This is 3 orders of magnitude larger than what is expected from conservative mass transfer driven by magnetic braking and gravitational radiation. From the conservation of the angular momentum of the system we find that to explain the high and positive value of the orbital period derivative the mass transfer rate must not be less than 3 times the Eddington limit for a neutron star, suggesting that the mass transfer has to be partially non-conservative. With the hypothesis that the neutron star accretes at the Eddington limit we find a consistent solution in which at least 70% of the transferred mass has to be expelled from the system.Comment: Published by A&

    The Relationship Between X-ray Luminosity and Duty Cycle for Dwarf Novae and their Specific Frequency in the Inner Galaxy

    Get PDF
    We measure the duty cycles for an existing sample of well observed, nearby dwarf novae using data from AAVSO, and present a quantitative empirical relation between the duty cycle of dwarf novae outbursts and the X-ray luminosity of the system in quiescence. We have found that logDC=0.63(±0.21)×(logLX(ergs1)31.3)0.95(±0.1)\log DC=0.63(\pm0.21)\times(\log L_{X}({\rm erg\,s^{-1}})-31.3)-0.95(\pm0.1), where DC stands for duty cycle. We note that there is intrinsic scatter in this relation greater than what is expected from purely statistical errors. Using the dwarf nova X-ray luminosity functions from \citet{Pretorius12} and \citet{Byckling10}, we compare this relation to the number of dwarf novae in the Galactic Bulge Survey which were identified through optical outbursts during an 8-day long monitoring campaign. We find a specific frequency of X-ray bright (LX>1031ergs1L_{X}>10^{31}\,{\rm erg\,s^{-1}}) Cataclysmic Variables undergoing Dwarf Novae outbursts in the direction of the Galactic Bulge of 6.6±4.7×105M16.6\pm4.7\times10^{-5}\,M_{\odot}^{-1}. Such a specific frequency would give a Solar neighborhood space density of long period CVs of ρ=5.6±3.9×106\rho=5.6\pm3.9\times10^{-6}\,pc3^{-3}. We advocate the use of specific frequency in future work, given that projects like LSST will detect DNe well outside the distance range over which ρconst\rho\approx{\textrm const}.Comment: 9 pagers, 4 figures Accepted for publication in MNRA
    corecore