598 research outputs found

    Superconductivity in a Molecular Metal Cluster Compound

    Get PDF
    Compelling evidence for band-type conductivity and even bulk superconductivity below T_c≈8T\_{\text{c}}\approx 8 K has been found in 69,71^{69,71}Ga-NMR experiments in crystalline ordered, giant Ga_84\_{84} cluster-compounds. This material appears to represent the first realization of a theoretical model proposed by Friedel in 1992 for superconductivity in ordered arrays of weakly coupled, identical metal nanoparticles.Comment: 5 pages, 4 figure

    Magnetic dipolar ordering and relaxation in the high-spin molecular cluster compound Mn6

    Get PDF
    Few examples of magnetic systems displaying a transition to pure dipolar magnetic order are known to date, and single-molecule magnets can provide an interesting example. The molecular cluster spins and thus their dipolar interaction energy can be quite high, leading to reasonably accessible ordering temperatures, provided the crystal field anisotropy is sufficiently small. This condition can be met for molecular clusters of sufficiently high symmetry, as for the Mn6 compound studied here. Magnetic specific heat and susceptibility experiments show a transition to ferromagnetic dipolar order at T_{c} = 0.16 K. Classical Monte-Carlo calculations indeed predict ferromagnetic ordering and account for the correct value of T_{c}. In high magnetic fields we detected the contribution of the ^{55}Mn nuclei to the specific heat, and the characteristic timescale of nuclear relaxation. This was compared with results obtained directly from pulse-NMR experiments. The data are in good mutual agreement and can be well described by the theory for magnetic relaxation in highly polarized paramagnetic crystals and for dynamic nuclear polarization, which we extensively review. The experiments provide an interesting comparison with the recently investigated nuclear spin dynamics in the anisotropic single molecule magnet Mn12-ac.Comment: 19 pages, 11 eps figures. Contains extensive discussions on dipolar ordering, specific heat and nuclear relaxation in molecular magnet

    An automated and versatile ultra-low temperature SQUID magnetometer

    Get PDF
    We present the design and construction of a SQUID-based magnetometer for operation down to temperatures T = 10 mK, while retaining the compatibility with the sample holders typically used in commercial SQUID magnetometers. The system is based on a dc-SQUID coupled to a second-order gradiometer. The sample is placed inside the plastic mixing chamber of a dilution refrigerator and is thermalized directly by the 3He flow. The movement though the pickup coils is obtained by lifting the whole dilution refrigerator insert. A home-developed software provides full automation and an easy user interface.Comment: RevTex, 10 pages, 10 eps figures. High-resolution figures available upon reques

    Field induced long-range-ordering in an S=1 quasi-one-dimensional Heisenberg antiferromagnet

    Full text link
    We have measured the heat capacity and magnetization of the spin one one-dimensional Heisenberg antiferromagnet NDMAP and constructed a magnetic field versus temperature phase diagram. We found a field induced long-range magnetic ordering. We have been successful in explaining the phase diagram theoretically.Comment: 6 pages, 18 figure

    Magnetic and thermal properties of 4f-3d ladder-type molecular compounds

    Full text link
    We report on the low-temperature magnetic susceptibilities and specific heats of the isostructural spin-ladder molecular complexes L2_{2}[M(opba)]_{3\cdot xDMSOâ‹…y\cdot yH2_{2}O, hereafter abbreviated with L2_{2}M3_{3} (where L = La, Gd, Tb, Dy, Ho and M = Cu, Zn). The results show that the Cu containing complexes (with the exception of La2_{2}Cu3_{3}) undergo long range magnetic order at temperatures below 2 K, and that for Gd2_{2}Cu3_{3} this ordering is ferromagnetic, whereas for Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} it is probably antiferromagnetic. The susceptibilities and specific heats of Tb2_{2}Cu3_{3} and Dy2_{2}Cu3_{3} above TCT_{C} have been explained by means of a model taking into account nearest as well as next-nearest neighbor magnetic interactions. We show that the intraladder L--Cu interaction is the predominant one and that it is ferromagnetic for L = Gd, Tb and Dy. For the cases of Tb, Dy and Ho containing complexes, strong crystal field effects on the magnetic and thermal properties have to be taken into account. The magnetic coupling between the (ferromagnetic) ladders is found to be very weak and is probably of dipolar origin.Comment: 13 pages, 15 figures, submitted to Phys. Rev.

    New quantum phase transitions in the two-dimensional J1-J2 model

    Full text link
    We analyze the phase diagram of the frustrated Heisenberg antiferromagnet, the J1-J2 model, in two dimensions. Two quantum phase transitions in the model are already known: the second order transition from the Neel state to the spin liquid state at (J_2/J_1)_{c2}=0.38, and the first order transition from the spin liquid state to the collinear state at (J_2/J_1)_{c4}=0.60. We have found evidence for two new second order phase transitions: the transition from the spin columnar dimerized state to the state with plaquette type modulation at (J_2/J_1)_{c3}=0.50(2), and the transition from the simple Neel state to the Neel state with spin columnar dimerization at (J_2/J_1)_{c1}=0.34(4). We also present an independent calculation of (J_2/J_1)_{c2}=0.38 using a new approach.Comment: 3 pages, 5 figures; added referenc

    Suppression of Dimer Correlations in the Two-Dimensional J1J_1-J2J_2 Heisenberg Model: an Exact Diagonalization Study

    Full text link
    We present an exact diagonalization study of the ground state of the spin-half J1−J2J_1{-}J_2 model. Dimer correlation functions and the susceptibility associated to the breaking of the translational invariance are calculated for the 4×44\times 4 and the 6×66\times 6 clusters. These results -- especially when compared to the one dimensional case, where the occurrence of a dimerized phase for large enough frustration is well established -- suggest either a homogeneous spin liquid or, possibly, a dimerized state with a rather small order parameter
    • …
    corecore