66,179 research outputs found
Effect of hyperon bulk viscosity on neutron-star r-modes
Neutron stars are expected to contain a significant number of hyperons in
addition to protons and neutrons in the highest density portions of their
cores. Following the work of Jones, we calculate the coefficient of bulk
viscosity due to nonleptonic weak interactions involving hyperons in
neutron-star cores, including new relativistic and superfluid effects. We
evaluate the influence of this new bulk viscosity on the gravitational
radiation driven instability in the r-modes. We find that the instability is
completely suppressed in stars with cores cooler than a few times 10^9 K, but
that stars rotating more rapidly than 10-30% of maximum are unstable for
temperatures around 10^10 K. Since neutron-star cores are expected to cool to a
few times 10^9 K within seconds (much shorter than the r-mode instability
growth time) due to direct Urca processes, we conclude that the gravitational
radiation instability will be suppressed in young neutron stars before it can
significantly change the angular momentum of the star.Comment: final PRD version, minor typos etc correcte
Use of thermal inertia determined by HCMM to predict nocturnal cold prone areas in Florida
Registered data sets were used to develop qualititative temperature and delta T maps of a band across north Florida and across south Florida for use with Carlson's boundary layer energy model balance model. Thermal inertia and moisture availability computations for north Florida are being used to investigate model sensitivity and to evaluate input parameters. Temperature differences of day-night HCMM overpasses clearly differentiate wetlands and uplands areas
Classical model for bulk-ensemble NMR quantum computation
We present a classical model for bulk-ensemble NMR quantum computation: the
quantum state of the NMR sample is described by a probability distribution over
the orientations of classical tops, and quantum gates are described by
classical transition probabilities. All NMR quantum computing experiments
performed so far with three quantum bits can be accounted for in this classical
model. After a few entangling gates, the classical model suffers an exponential
decrease of the measured signal, whereas there is no corresponding decrease in
the quantum description. We suggest that for small numbers of quantum bits, the
quantum nature of NMR quantum computation lies in the ability to avoid an
exponential signal decrease.Comment: 14 pages, no figures, revte
The Ages of A-Stars I: Interferometric Observations and Age Estimates for Stars in the Ursa Major Moving Group
We have observed and spatially resolved a set of seven A-type stars in the
nearby Ursa Major moving group with the Classic, CLIMB, and PAVO beam combiners
on the CHARA Array. At least four of these stars have large rotational
velocities ( 170 ) and are expected to
be oblate. These interferometric measurements, the stars' observed photometric
energy distributions, and values are used to computationally
construct model oblate stars from which stellar properties (inclination,
rotational velocity, and the radius and effective temperature as a function of
latitude, etc.) are determined. The results are compared with MESA stellar
evolution models (Paxton et al. 2011, 2013) to determine masses and ages. The
value of this new technique is that it enables the estimation of the
fundamental properties of rapidly rotating stars without the need to fully
image the star. It can thus be applied to stars with sizes comparable to the
interferometric resolution limit as opposed to those that are several times
larger than the limit. Under the assumption of coevality, the spread in ages
can be used as a test of both the prescription presented here and the MESA
evolutionary code for rapidly rotating stars. With our validated technique, we
combine these age estimates and determine the age of the moving group to be 414
23 Myr, which is consistent with, but much more precise than previous
estimates.Comment: Accepted by Ap
Radiative decays of heavy and light mesons in a quark triangle approach
The radiative meson decays and are
analyzed using the quark triangle diagram. Experimental data yield well
determined estimates of the universal quark-antiquark-meson couplings
and for the light meson sector. Also
predictions for the ratios of neutral to charged heavy meson decay coupling
constants are given and await experimental confirmation.Comment: 31 pages of RevTex, 5 figures, Postscript version available at
http://info.utas.edu.au/docs/physics/theory/Publications/9548.html, scheduled
to appear in Phys. Rev. D, vol 53, issue 11, 199
Dust in the Photospheric Environment: Unified Cloudy Models of M, L, and T Dwarfs
We address the problem of how dust forms and how it could be sustained in the
static photospheres of cool dwarfs for a long time. In the cool and dense gas,
dust forms easily at the condensation temperature, T_cond, and the dust can be
in detailed balance with the ambient gas so long as it remains smaller than the
critical radius, r_cr. However, dust will grow larger and segregate from the
gas when it will be larger than r_cr somewhere at the lower temperature, which
we refer to as the critical temperature, T_cr. Then, the large dust grains will
precipitate below the photosphere and only the small dust grains in the region
of T_cr < T < T_cond can be sustained in the photosphere. Thus a dust cloud is
formed. Incorporating the dust cloud, non-grey model photo- spheres in
radiative-convective equilibrium are extended to T_eff as low as 800K. Observed
colors and spectra of cool dwarfs can consistently be accounted for by a single
grid of our cloudy models. This fact in turn can be regarded as supporting
evidence for our basic assumption on the cloud formation.Comment: 50 pages with 14 postscript figures, to be published in Astrophys.
“It’s like my life but more, and better!” - Playing with the Cathaby Shark Girls: MMORPGs, young people and fantasy-based social play
This article is available open access through the publisher’s website at the link below. Copyright @ 2011 A B Academic Publishers.Digital technology has opened up a range of new on-line leisure spaces for young people. Despite their popularity, on-line games and Massive Multiplayer Online Role Playing Games in particular are still a comparatively under-researched area in the fields of both Education and more broadly Youth Studies. Drawing on a Five year ethnographic study, this paper considers the ways that young people use the virtual spaces offered by MMORPGs. This paper suggests that MMORPGs represent significant arenas within which young people act out a range of social narratives through gaming. It argues that MMORPG have become important fantasy spaces which offer young people possibilities to engage in what were formally material practices. Although this form of play is grounded in the everyday it also extends material practices and offers new and unique forms of symbolic experimentation, thus I argue that game-play narratives cannot be divorced from the everyday lives of their participants
Left-Right Symmetry and Supersymmetric Unification
The existence of an SU(3) X SU(2)_L X SU(2)_R X U(1) gauge symmetry with g_L
= g_R at the TeV energy scale is shown to be consistent with supersymmetric
SO(10) grand unification at around 1O^{16} GeV if certain new particles are
assumed. The additional imposition of a discrete Z_2 symmetry leads to a
generalized definition of R parity as well as highly suppressed Majorana
neutrino masses. Another model based on SO(10) X SO(10) is also discussed.Comment: 11 pages, 2 figures not included, UCRHEP-T124, Apr 199
- …