120 research outputs found

    Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter.

    Get PDF
    There is increasing concern about the health impacts of ambient Particulate Matter (PM) exposure. Traditional monitoring networks, because of their sparseness, cannot provide sufficient spatial-temporal measurements characteristic of ambient PM. Recent studies have shown portable low-cost devices (e.g., optical particle counters, OPCs) can help address this issue; however, their application under ambient conditions can be affected by high relative humidity (RH) conditions. Here, we show how, by exploiting the measured particle size distribution information rather than PM as has been suggested elsewhere, a correction can be derived which not only significantly improves sensor performance but which also retains fundamental information on particle composition. A particle size distribution⁻based correction algorithm, founded on Îș -Köhler theory, was developed to account for the influence of RH on sensor measurements. The application of the correction algorithm, which assumed physically reasonable Îș values, resulted in a significant improvement, with the overestimation of PM measurements reduced from a factor of ~5 before correction to 1.05 after correction. We conclude that a correction based on particle size distribution, rather than PM mass, is required to properly account for RH effects and enable low cost optical PM sensors to provide reliable ambient PM measurements

    Measuring Aerosol Phase Changes and Hygroscopicity with a Microresonator Mass Sensor.

    Get PDF
    The interaction between atmospheric aerosol particles and water vapor influences aerosol size, phase, and composition, parameters which critically influence their impacts in the atmosphere. Methods to accurately measure aerosol water uptake for a wide range of particle types are therefore merited. We present here a new method for characterizing aerosol hygroscopicity, an impaction stage containing a microelectromechanical systems (MEMS) microresonator. We find that deliquescence and efflorescence relative humidities (RHs) of sodium chloride and ammonium sulfate are easily diagnosed via changes in resonant frequency and peak sharpness. These agree well with literature values and thermodynamic models. Furthermore, we demonstrate that, unlike other resonator-based techniques, full hygroscopic growth curves can be derived, including for an inorganic-organic mixture (sodium chloride and malonic acid) which remains liquid at all RHs. The response of the microresonator frequency to temperature and particle mechanical properties and the resulting limitations when measuring hygroscopicity are discussed. MEMS resonators show great potential as miniaturized ambient aerosol mass monitors, and future work will consider the applicability of our approach to complex ambient samples. The technique also offers an alternative to established methods for accurate thermodynamic measurements in the laboratory

    A nocturnal atmospheric loss of CH2I2 in the remote marine boundary layer

    Get PDF
    This is the final version of the article. It was first available from Springer via http://dx.doi.org/10.1007/s10874-015-9320-6Ocean emissions of inorganic and organic iodine compounds drive the biogeochemical cycle of iodine and produce reactive ozone-destroying iodine radicals that influence the oxidizing capacity of the atmosphere. Di-iodomethane (CH?I?) and chloro-iodomethane (CH?ICl) are the two most important organic iodine precursors in the marine boundary layer. Ship-borne measurements made during the TORERO (Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOC) field campaign in the east tropical Pacific Ocean in January/February 2012 revealed strong diurnal cycles of CH?I? and CH?ICl in air and of CH?I? in seawater. Both compounds are known to undergo rapid photolysis during the day, but models assume no night-time atmospheric losses. Surprisingly, the diurnal cycle of CH?I? was lower in amplitude than that of CH?ICl, despite its faster photolysis rate. We speculate that night-time loss of CH?I? occurs due to reaction with NO? radicals. Indirect results from a laboratory study under ambient atmospheric boundary layer conditions indicate a k_(CH?I?+NO?) of ?4 ? 10??? cm? molecule?? s??; a previous kinetic study carried out at ?100 Torr found k_(CH?I?+NO?) of 4 ? 10??? cm? molecule?? s??. Using the 1-dimensional atmospheric THAMO model driven by sea-air fluxes calculated from the seawater and air measurements (averaging 1.8 +/? 0.8 nmol m?? d?? for CH?I? and 3.7 +/? 0.8 nmol m?? d?? for CH?ICl), we show that the model overestimates night-time CH?I? by >60 % but reaches good agreement with the measurements when the CH?I?+ NO? reaction is included at 2?4 ? 10??? cm? molecule?? s??. We conclude that the reaction has a significant effect on CH?I? and helps reconcile observed and modeled concentrations. We recommend further direct measurements of this reaction under atmospheric conditions, including of product branching ratios.LJC acknowledges NERC (NE/J00619X/1) and the National Centre for Atmospheric Science (NCAS) for funding. The laboratory work was supported by the NERC React-SCI (NE/K005448/1) and RONOCO (NE/F005466/1) grants

    Linking e-health records, patient-reported symptoms and environmental exposure data to characterise and model COPD exacerbations: protocol for the COPE study.

    Get PDF
    INTRODUCTION: Relationships between exacerbations of chronic obstructive pulmonary disease (COPD) and environmental factors such as temperature, humidity and air pollution are not well characterised, due in part to oversimplification in the assignment of exposure estimates to individuals and populations. New developments in miniature environmental sensors mean that patients can now carry a personal air quality monitor for long periods of time as they go about their daily lives. This creates the potential for capturing a direct link between individual activities, environmental exposures and the health of patients with COPD. Direct associations then have the potential to be scaled up to population levels and tested using advanced human exposure models linked to electronic health records. METHODS AND ANALYSIS: This study has 5 stages: (1) development and deployment of personal air monitors; (2) recruitment and monitoring of a cohort of 160 patients with COPD for up to 6 months with recruitment of participants through the Clinical Practice Research Datalink (CPRD); (3) statistical associations between personal exposure with COPD-related health outcomes; (4) validation of a time-activity exposure model and (5) development of a COPD prediction model for London. ETHICS AND DISSEMINATION: The Research Ethics Committee for Camden and Islington has provided ethical approval for the conduct of the study. Approval has also been granted by National Health Service (NHS) Research and Development and the Independent Scientific Advisory Committee. The results of the study will be disseminated through appropriate conference presentations and peer-reviewed journals.This work is funded by the Medical Research Council (MR/L019744/1). MRC-PHE funding has been obtained for a pilot study to collect blood and sputum samples on a subset of 20 participants. Enrolment will take place at The Royal Brompton and Harefield (RBH) and Guy's and St Thomas' (GSTT) NHS Foundation Trusts. Support will be provided by the Respiratory Clinical Research Facility at RBH and the Lane Fox Unit at GSTT. The project is a portfolio adopted by the National Institute for Health Research (NIHR) UK Clinical Research Network (CRN). Additional support was provided by the NIHR Biomedical Research Centre based at GSTT and King's College London.This is the final version of the article. It first appeared from the BMJ Publishing Group via http://dx.doi.org/10.1136/bmjopen-2016-01133

    iDirac: a field-portable instrument for long-term autonomous measurements of isoprene and selected VOCs

    Get PDF
    The iDirac is a new instrument to measure selected hydrocarbons in the remote atmosphere. A robust design is central to its specifications, with portability, power efficiency, low gas consumption and autonomy as the other driving factors in the instrument development. The iDirac is a dual-column isothermal oven gas chromatograph with photoionisation detection (GC-PID). The instrument is designed and built in-house. It features a modular design, with the novel use of open-source technology for accurate instrument control. Currently configured to measure biogenic isoprene, the system is suitable for a range of compounds. For isoprene measurements in the field, the instrument precision (relative standard deviation) is ±10 %, with a limit of detection down to 38 pmol mol−1 (or ppt). The instrument was first tested in the field in 2015 during a ground-based campaign, and has since shown itself suitable for deployment in a variety of environments and platforms. This paper describes the instrument design, operation and performance based on laboratory tests in a controlled environment as well as during deployments in forests in Malaysian Borneo and central England

    Recruitment of patients with Chronic Obstructive Pulmonary Disease (COPD) from the Clinical Practice Research Datalink (CPRD) for research.

    Get PDF
    Databases of electronic health records (EHR) are not only a valuable source of data for health research but have also recently been used as a medium through which potential study participants can be screened, located and approached to take part in research. The aim was to assess whether it is feasible and practical to screen, locate and approach patients to take part in research through the Clinical Practice Research Datalink (CPRD). This is a cohort study in primary care. The CPRD anonymised EHR database was searched to screen patients with Chronic Obstructive Pulmonary Disease (COPD) to take part in a research study. The potential participants were contacted via their General Practitioner (GP) who confirmed their eligibility. Eighty two practices across Greater London were invited to the study. Twenty-six (31.7%) practices consented to participate resulting in a pre-screened list of 988 patients. Of these, 632 (63.7%) were confirmed as eligible following the GP review. Two hundred twenty seven (36%) response forms were received by the study team; 79 (34.8%) responded 'yes' (i.e., they wanted to be contacted by the research assistant for more information and to talk about enrolling in the study), and 148 (65.2%) declined participation. This study has shown that it is possible to use EHR databases such as CPRD to screen, locate and recruit participants for research. This method provides access to a cohort of patients while minimising input needed by GPs and allows researchers to examine healthcare usage and disease burden in more detail and in real-life settings

    Using low-cost sensor technologies and advanced computational methods to improve dose estimations in health panel studies: results of the AIRLESS project.

    Get PDF
    BACKGROUND: Air pollution epidemiology has primarily relied on fixed outdoor air quality monitoring networks and static populations. METHODS: Taking advantage of recent advancements in sensor technologies and computational techniques, this paper presents a novel methodological approach that improves dose estimations of multiple air pollutants in large-scale health studies. We show the results of an intensive field campaign that measured personal exposures to gaseous pollutants and particulate matter of a health panel of 251 participants residing in urban and peri-urban Beijing with 60 personal air quality monitors (PAMs). Outdoor air pollution measurements were collected in monitoring stations close to the participants' residential addresses. Based on parameters collected with the PAMs, we developed an advanced computational model that automatically classified time-activity-location patterns of each individual during daily life at high spatial and temporal resolution. RESULTS: Applying this methodological approach in two established cohorts, we found substantial differences between doses estimated from outdoor and personal air quality measurements. The PAM measurements also significantly reduced the correlation between pollutant species often observed in static outdoor measurements, reducing confounding effects. CONCLUSIONS: Future work will utilise these improved dose estimations to investigate the underlying mechanisms of air pollution on cardio-pulmonary health outcomes using detailed medical biomarkers in a way that has not been possible before.This project is funded under the Newton Fund Programme awarded by Natural Environmental Research Council (NERC Grant NE/N007018/1) with support from Medical Research Council (MRC) and by the National Natural Science Foundation of China (NSFC Grant 81571130100). The NSFC funding is mainly used to support the field work in China, and NERC funding is mainly used for coordination and the further analysis
    • 

    corecore