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Abstract

Air pollution epidemiology has primarily relied on fixed outdoor air quality monitoring
networks and static populations. Taking advantage of recent advancements in sensor
technologies and computational techniques, this paper presents a novel methodological
approach that improves dose estimations of multiple air pollutants in large-scale health
studies. We show the results of an intensive field campaign that measured personal
exposures to gaseous pollutants and particulate matter of a health panel of 251 participants
residing in urban and peri-urban Beijing with 60 personal air quality monitors (PAMs).
Outdoor air pollution measurements were collected in monitoring stations close to the
participants’ residential addresses. Based on parameters collected with the PAMs, we
developed an advanced computational model that automatically classified time-activity-
location patterns of each individual during daily life at high spatial and temporal resolution.
Applying this methodological approach in two established cohorts, we found substantial
differences between doses estimated from outdoor and personal air quality measurements.
The PAM measurements also significantly reduced the correlation between pollutant
species often observed in static outdoor measurements, reducing confounding effects.
Future work will utilise these improved dose estimations to investigate the underlying
mechanisms of air pollution on cardio-pulmonary health outcomes using detailed medical

biomarkers in a way that has not been possible before.

keywords: novel sensor technologies, gaseous pollutants, particulate matter, time-

activity-location patterns, exposure misclassification, dose estimation, health outcomes
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1 Introduction

Over the last decades, in rapidly developing countries, such as China, the disease burden
has shifted from a profile dominated by infectious diseases to one increasingly char-
acterised by non-communicable diseases (NCDs)'. Air pollution is now the leading
environmental risk factor for NCDs resulting in millions of premature deaths and acceler-
ating rates of chronic disease worldwide®. Epidemiological studies have had significant
impact in the setting of national and international air quality standards to protect global
populations from the detrimental effects of air pollution. However, most of these studies
commonly derive metrics of short-term exposure from static outdoor monitoring networks
with low spatial and temporal resolution®. Such measurements are generally highly corre-
lated at these coarser scales and cannot separate the individual health effects of pollutants®.
Failure to capture the high granularity of total personal exposure introduces exposure

misclassification that can lead to bias in health estimations>-©.

A range of complex interacting factors drive the high ambient air pollution heterogene-
ity, while individual variability in personal exposure includes a behavioural component’
as a person moves between different microenvironments with varying emission sources.
During daily life, peak exposure events often occur during commuting® while the indoor
environment is a significant site for exposure in part because people spend substantial
fractions (often as much as 90%) of their time indoors’. Indoor air is affected by out-
door pollutants penetrating building envelopes with additional indoor sinks, sources and
emissions from building materials which cannot be captured by static outdoor monitoring

networks!?.

Several studies have identified large discrepancies between personal exposure measure-
ments and outdoor concentrations’. These exposure uncertainties may introduce prediction
errors and bias with substantial implications for interpreting epidemiological studies on
air pollution, particularly the time-series analyses”. The between-subject variability is
large because air pollutants concentrations vary significantly by both location and activity.
Therefore, a comprehensive personal exposure assessment requires two components: (1)
the pollutant concentrations the person is exposed to; and, (2) the recording of a person’s

time-activity patterns which may vary with age, gender, occupation and socio-economic
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status'!. Physical activity levels affect the potential dose of inhaled air pollution'?.

In light of this challenge, “Effects of AIR pollution on cardiopuLmonary disEaSe in
urban and peri-urban reSidents in Beijing” (AIRLESS)'? nested within the within the
“Air pollution and human health in a Chinese megacity” (APHH) research programme
was initiated'*. The aim of the AIRLESS project was to address the complex issue of
multipollutant exposures on cardiopulmonary outcomes. This paper presents the results of
the field deployment of 60 portable air pollution sensor platforms for one week during
the winter and summer season in 251 participants of the AIRLESS panel study residing
in urban and peri-urban China. The expectation is that similar effects would be evident
in the general population hence this paper has wider significance than just these cohorts.
The main objective of this work is to demonstrate that novel sensor technologies and
computational methods offer a paradigm shift in collecting highly resolved measurements

of individualised air pollutants improving dose estimations in large-scale health studies.

2 Materials and Methods

This section briefly describes the methodology employed for creating a comprehensive
database of validated personal concentrations and time-activity location patterns of 251
participants of a health panel study matched with intensive monitoring of outdoor air
pollution levels. In the last subsection, methodologies for estimating dose with traditional
and highly resolved exposure metrics are outlined. The AIRLESS project will integrate
these results of detailed doses and exposures to multiple air pollutants with changes in

cardio-pulmonary health outcomes to ensure the biggest scientific and policy impact.

2.1 The participant sample

The measurements were collected as part of the AIRLESS project which was designed as
a panel study with repeated personal exposure and clinical measurements of 123 urban
and 128 peri-urban participants during the winter (14" Nov—21* Dec 2016) and summer
seasons (22"¢ May-21* Jun 2017). Each participant carried a PAM for one week in each
season. Thirty PAM devices were deployed at both the urban and peri-urban clinic sites,
which enabled the recruitment of 30 subjects each week at each location. This paper will

mainly focus on the analysis of the winter campaign data. The participants residing in the
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urban site were 59-75 years old, and were primarily retired (88%). In the peri-urban site
the age range was between 50-73 years old, and their primary occupation was agriculture

(53%) followed by retirement 17% and housekeeping 13%'3.

2.2 Outdoor air pollution measurements

Intensive ambient air pollution monitoring campaigns were launched simultaneously
next to the urban and peri-urban clinics, which were in close proximity to most subjects’
residential addresses. Both of these stations measured background air pollution levels,
as they were located away from direct sources. These measurements had the same time
resolution as the personal measurements (1 min). A detailed description of the ambient air

pollution monitoring campaign is presented in Shi et al., 2019'4.

2.3 The personal air quality monitor (PAM)

The PAM is an autonomous unit that incorporates multiple sensors for activity, and for
physical and chemical parameters'>. The compact and lightweight design of the PAM (~
400g) makes the unit suitable for personal exposure assessment. The time resolution of the
measurements was set at 1 min time intervals resulting in a battery life on a single charge
of ~ 24 hours. The PAM collects multiple timestamped geo-coordinated measurements
of gaseous pollutants, particulate matter, temperature, relative humidity, background noise
levels and accelerometry. Measurements are transmitted to a secure server through GPRS
for further processing.

Previous work'> characterised the performance of the PAM that integrates multiple
miniaturised sensors for nitrogen oxides (NO,), carbon monoxide (CO), ozone (O3) and
particulate matter (PM) measurements. Overall, the sensors of the PAM captured air pol-
lutants concentrations in unprecedented detail in outdoor and indoor microenvironments
across seasons and in different geographical settings making it suitable for collecting
highly resolved exposure metrics at large scale. Following the methodology described
in that paper, the raw measurements of gaseous pollutants and particulate matter were
converted to physical units.

Data capture rate of personal measurements after cleaning was 81% demonstrating

the deployment feasibility and participant acceptability of novel sensor technologies.
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2.4 The time-activity model
This subsection provides a brief overview of the progressive composite model (Figure 1)
that classifies time-activity-location patterns automatically using: (1) auxiliary parameters
collected with the PAM (geo-coordinates, background noise and acceleration levels) as
input; and (2) machine learning techniques of spatio-temporal clustering, movement
analysis methods, geographical information systems (GIS)'® and rule-based algorithms.
The participants carried the PAMs during their daily life (Figure 1 a). In the first
step, the model computes the space-time utilisation distributions of the GPS coordinates

for each participant (Figure 1 b)!’

. The resulting metrics (time spent in each location,
re-visitation rate and metrics of directional movement) were used to classify each point
in one of three core location categories (Figure 1 ¢): home, other static locations and in
transit. Sleeping was further classified in the home category using local time, background
noise levels and deposition of coarse particulate matter. In transit category was classified
into five modes of transport (walking, cycling, motorbike, car/bus and train/tube) (Figure
1 d) to capture distinct air pollution micro-environments and different inhalation rates.
The time-activity classification of the data collected during the winter campaign
showed that, in line with previous research’, the participants spent as much as 90% of
their time at home (Figure 1 e) partly due to socio-economic factors (e.g. little agricul-
tural activity in winter and large percentage of retired participants). Travel behaviour
is a complex issue affected by a multitude of factors, for instance supply and costs of
transportation alternatives, incomes as well as urban size and spread. In line with previous

studies'®, the urban participants spent 5% of their time budget travelling, and covered a

larger spatial area than the peri-urban group that were relatively sedentary (Figure 1 a).

2.5 Personal concentrations, exposure and dose estimates

The basic concepts used in exposure assessments were developed in the early 80s'°. Per-
sonal exposure is defined as the contact of a person with a pollutant of concentration c,
at a particular time t. We refer to the mean personal exposure as the average pollutant
concentration in the visited microenvironment over the corresponding time period?’. In
the following, exposure misclassification is defined as the difference between exposure es-

timated from measurements at a fixed monitoring station and personal exposure measured
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by portable sensors.

The air pollution dose describes the amount of pollutant that is actually received by
the organism by inhalation. As a first approximation, the potential dose can be defined
as the inhaled amount of a pollutant, assuming a total absorption of the pollutant by the
body. In the following, the term "dose" will refer to this potential dose. The dose D(t) per
time unit [ug min~!'] is the product of the air pollution concentration ¢ [ptg m—>] with the
inhalation rate f [m> min~!]** (Equation 1). The total dose is the integral of D(t) over a

defined period of time, in this study over the participation time of each individual (7 days).

D(t) = f(r)c(r) (D)

In epidemiological studies, ambient monitoring data are typically averaged for the
study area and short-term exposure on any given day is assumed to be the same for the
entire population®!. To understand the differences that arise from the spatial resolution of
air pollution measurements employed and the varying time-activity-location patterns of

individuals, three approaches were adopted to estimate dose:

e Method A uses air pollution measurements from the static monitoring station clos-
est to the participant’s residential address ¢y (t) representing the method employed
by the majority of epidemiological studies to estimate exposure. Although this ap-
proximation is generally poor, the relevant parameter for interpretation is the extent
to which actual personal exposures are correlated to the area-average exposure over

—112

time?!. This method uses generic inhalation rates fg., = 9L m as the level of

physical activity may not be available.

e Method B assumes the same generic inhalation rate fg,,, but utilises highly resolved
air pollution measurements in the immediate proximity of the participant collected

with the PAM cpay.

e Method C estimates intake in an optimal way by using air pollution concentrations

measured in the immediate microenvironment of each participant at high temporal
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resolution (cpays), and inhalation rates derived from the physical activity intensity

(facr) estimated with the time-activity model (subsection 2.4).

3 Results

3.1 Seasonal variation of outdoor and personal air pollution concentra-
tions
In summary, outdoor air pollution was poor during the winter campaign with all pollutants,
except ozone, being significantly higher than during the summer (Figure 2). Synoptic-
scale meteorological analysis suggests that the degraded winter outdoor air quality was
due to the greater stagnation and weak southerly circulation'*. More specifically, winter
outdoor air pollution was characterised by several high PM; s pollution events, with peak
hourly concentrations ranging up to 617 g m~>; whereas, during the summer there were
events of high ozone concentrations with the highest hourly average of 168 ppb.
Concentrations measured with the PAMs carried by participants showed two distinct

profiles (Figure 2) consistent between seasons:

e Personal CO and NO concentrations. Partially driven by the outdoor concentra-
tions, levels of CO and NO, measured with the PAMs showed a strong seasonal
variation with higher levels measured during the winter season. The difference
between personal and outdoor concentrations was much higher during winter indi-

cating stronger sources in proximity to the participants compared with the summer.

e Personal NO,, PM; 5, and O3 concentrations. Contrary to personal CO and NO
levels, which broadly followed the outdoor trends, NO,, PM, 5, and O3 levels
(Figure 2) were significantly lower than outdoor levels in both seasons and showed

little (PM> 5, and O3) or no (NO») seasonal variation.

The personal measurements show that there is a substantial exposure misclassification
that could be introduced when using outdoor measurements as exposure metrics. Apart
from the substantial difference in the magnitude of personal and outdoor measurements,
there is also a poor correlation (R? <0.2 across all pollutants; see Figure S1 in Supple-

mentary Material) indicating that in that environment exposure metrics derived from

Journal of Exposure Analysis and Environmental Epidemiology 8/19
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the outdoor monitoring stations explained an insignificant amount of the variability in

personal exposure.

3.2 Correlation between individual pollutants
The previous subsection highlighted that measurements from static outdoor monitoring

sites are poor surrogates for personal exposure levels stressing the need for measurements

as close as possible to the individual to capture the high granularity of personal exposure.

A further significant limitation introduced when using measurements from static
monitoring stations as metrics of exposure is usually the high correlation between different
species. For example, COMEAP report* concluded that insufficient evidence on the health
impacts of NO, due to the high correlation of this pollutant with other traffic-related
pollutants such as primary combustion particles, particle number concentration or carbon
monoxide. As a result, the statistical associations of each individual pollutant with a health
effect will, to some extent, also reflect the effects of other pollutants in the group.

The difficulty of interpreting the results of highly correlated pollutants persists even
when multi-pollutant models are applied in the statistical analysis, as the multicollinearity
introduced from highly correlated species prohibits multipollutant health models from
assigning specific health effects to individual pollutants. In addition, if one correlated
pollutant has a larger exposure misclassification than another, this may result in the effects
associated with a causal relationship being under-estimated whilst non-causal associations
are spuriously overestimated®.

The correlation between outdoor pollutants will vary by location, in this case, Figure
3 (a) shows scatter plots between the outdoor NO, and PM; 5 concentrations measured
at the static outdoor monitoring station at the primary urban site used, and (b) measured
with mobile sensors carried by the urban participants. While the two pollutants were
strongly correlated at the outdoor monitoring station (R? = 0.64), low correlations were
observed in the personal measurements (R%? = 0.05). This demonstrates clearly that
personal monitoring can break the correlation between outdoor correlated pollutants
because they capture variable emissions from sources in the direct environment of a
person with changing compositions.

Figure 3 (b) uses the personal exposure measurements and breaks them down by

Journal of Exposure Analysis and Environmental Epidemiology 9/19
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location as classified by the time-activity model (subsection 2.4). A low correlation
between the two pollutants was observed at home and other static locations (R*<0.1),
whereas the two pollutants were moderately correlated in transit environments (R? =0.25).
This is due to similar emission sources in traffic outdoor environments where pollutants are
generally more correlated, also reflected in the measurements at the outdoor monitoring

site. Although not shown here equivalent arguments apply to CO and Os3.

3.3 Exposure and dose estimations

The large differences between outdoor and personal concentrations highlighted in the pre-
vious subsection were driven by time-activity-location patterns of individual participants
as well as infiltration rates of outdoor pollutants in visited indoor microenvironments.

The bar plots in Figure 4 show the average inhaled dose of urban and peri-urban
participants calculated with the three dose estimation methods described in Section 2.5. A
detailed description of the calculations used to create Figures 4, 5 and 6 is given in Section
SI.

As methods A and B are integrating a constant inhalation rate and the measurements
were taken over the same time period, the average dose depends only on the measured
pollutant concentrations in the surrounding microenvironment. Therefore, the doses are
directly proportional to the exposures, and the difference between the two methods is
a measure of the exposure misclassification between personal and outdoor estimates
which was substantial in all cases. For example, the outdoor stations overpredicted PM; s
exposure by up to 4-fold, while exposure to CO was under-predicted by up to 5-fold.

The difference between method B and method C, both derived from personal mea-
surement, was marginal (Figure 4) despite integrating activity-dependent inhalation rates
in method C. This was mostly due to the low physical activity levels of the participants
which resulted in an average inhalation rate similar to the generic one used for method A
and B. The home microenvironment was the most important modifier of personal dose,
partly because participants spent most of their time there (Figure 1 e). Additionally, strong
indoor sources of CO and NO operated in the home microenvironment elevating personal
dose. On the other hand, indoor doses of NO,, O3 and PM, 5 were lower indicating the

presence of strong chemical sinks.

Journal of Exposure Analysis and Environmental Epidemiology 10/19
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Using PM; 5 and NO; as an example, Figure 5 (a) shows the total pollutant dose of each
participant over their participation week (calculated with dose estimation method C). The
contributions from different microenvironments to the total dose are colour-coded. While
generally the urban participants receive a lower PM dose than the peri-urban group, the
urban participants received higher doses of NO, making, therefore, the exposure profiles
of these two groups distinct. However, the variation between individual participants was
larger than the variation between the two groups (Figure 5 b). Although the participants
spent little time in transportation, it was a significant site of exposure to both pollutants
particularly for the urban participants.

Figure 6 shows the average pollutant dose per minute the participants inhaled during
different activities, calculated with the three methods A, B and C. As method B integrates
one generic inhalation rate for all activities, the average dose is proportional to the pollutant
concentrations the participants were exposed to during the different activities. The home
environment had the biggest impact on CO dose which was probably caused by indoor
emission sources such as cooking and heating. The average NO, dose was highest during
street-level transportation possibly due to strong sources in the traffic environment. When
inhalation rates were taken into account (method C), the maximum dose was received
during active modes of transport (walking, cycling) due to the increased physical activity
levels and inhalation rates. It is therefore likely that the inhaled dose would be significantly

underestimated in more active subgroups of the population.

4 Discussion

Exposure misclassification of air pollution remains one of the biggest limitations of
epidemiological research on the health impacts of air pollution, preventing the discipline
to move from general associations to specific ones. In the absence of personal /indoor
measurements, health studies have mainly relied on available outdoor monitoring network
data to assess short-term exposures’!. This paper demonstrates a new methodological
framework where novel sensor technologies and advanced computational methods offer a
paradigm shift to estimate activity-weighted air pollution exposure in large-scale health
studies.

In total, 60 validated personal air quality platforms with miniaturised novel sensors

Journal of Exposure Analysis and Environmental Epidemiology 11/19
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that measure physical parameters, gaseous pollutants and particulate matter were deployed
to 251 participants of two established cohorts residing in urban and peri-urban Beijing,
China'®. Time-activity-location classifications were derived automatically using GPS
coordinates, accelerometry and background noise levels collected with the personal
monitors. Because such auxiliary data can be collected with widely used smartphones
from a large number of the population??, this technique potentially provides unobtrusive
means of enhancing epidemiological exposure data at low cost minimising participant

burden.

The relatively sedentary elderly participants spent approximately 90% of their time at
home and as little as 2% outdoors, which is in line with previous research in developed

countries’

. The home environment was, therefore, the major contributor to overall
exposure, and an important modifier of personal concentrations for all investigated air
pollutant species. Exposure differences between the two participant groups were attributed
partly to the variation in domestic energy use e.g. in winter the urban building stock in
China relies on centralised gas heating system, while traditional biomass and coal stoves
remain the key emission source for heating and cooking in peri-urban areas. However,
the exposure variability between participants was larger than the variability between the

two groups, stressing the need to go beyond current methodologies to estimate population

exposures.

We found low correlations and substantial differences in the magnitude estimated
from outdoor and personal air quality measurements. An important implication for
health studies is that relying on outdoor measurements could introduce significant error
and bias in health models depending on individual pollutants’ chemical reactivity and
strength of local emission sources. The magnitude of the health effects derived from
improved exposure estimates is likely to be different than previous estimations using
outdoor measurements as metrics of exposure®. The extend of misclassification is hard to

quantify as it varies significantly with season and location.

Traffic-related pollutants, such as NO, and PM, 5, are generally highly correlated
when measured at coarse spatial and temporal scales, making it challenging to distinguish

a causal link between a single pollutant and a specific health outcome®*. A major advantage
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of the proposed methodology is that novel sensor technologies enable the collection of
personal measurements at high spatial resolution, and therefore significantly reduce the
correlation between individual air pollutants observed at monitoring stations.

Further work matches these estimations with detailed medical biomarkers to draw
more reliable associations between air pollution exposure and health impacts'3. This paper
focused on a participant sample with specific personal and socio-economic characteristics
that resulted in generally low physical activity. However, the demonstrated approach is
applicable in diverse geographical settings and subgroups. The expectation is that the dose
misclassification will likely be larger in subpopulations that are more physically active,
such as children, increasing the importance of the proposed methodology in disentangling

the complex mechanisms of health risks and individual susceptibility to air pollution.
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List of Figures

Figure 1. Flow chart of time-activity model. (a) Raw GPS data of 251 participants
carrying 60 PAMs during the winter fieldwork campaign (14" Nov—21* Dec 2016)
plotted on urban and peri-urban maps. Map data Google 2019. (b) 3D map of a
representative participant illustrating the relative amount of time spent in visited locations.
The space-time utilisation distribution was constructed using advanced spatio-temporal
analysis of the GPS data'’. (c) Separation of static clusters from clusters with directional
movement using derived parameters from step b. (d) Classification of mode of transport
using movement analysis methods??, GIS'®, PAM data (e.g. speed, acceleration) and
questionnaire responses collected in the panel study. (e) Time spent in different locations
by the two cohorts.

Figure 2. The white whisker box plots illustrate outdoor air pollution levels measured at
the reference monitoring stations at the urban and suburban sites during the summer
(May-June 2017) and winter (Nov-Dec 2016) campaigns. The blue boxplots show the
levels measured with 60 PAMs (blue) deployed to 251 participants at the urban and
peri-urban site during the same periods.

Figure 3. Correlation between the concentration measurements of two different
pollution species (NO; and PM; 5). (a) Measurements of a static monitoring station (PKU
Beijing, grey) compared to measurements of portable monitors (urban site, black).
Measurements were taken over the same time period. (b) Portable monitor measurements
(inset of graph a) separated by location (home, other static and transit).

Figure 4. Dose estimations of various air pollutants using methods A, B and C (Section
2.5) in the urban (left) and peri-urban (right) participants.

Figure 5. (a) Total pollutant dose of each participant over one week for PM, 5 (top) and
NO; (bottom), estimated using method C. Colours mark the contributions of each activity
to the total dose. (b): Density plots of the individual doses in the urban (blue) and
peri-urban (black) cohort, the vertical dotted lines mark the average weekly dose of the
two cohorts.

Figure 6. Mean pollutant dose per minute during different activities using the three
estimation methods A, B and C (averaged over the urban and peri-urban cohort).
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Supplementary Material

S1. Detailed description of the data analysis for Figures 4 - 6

Figure 5 (a) shows the total weekly doses D(p) of each participant p split by activity act.
For this graph, the total dose per activity D, (p) was first calculated for each participant
by integrating the time-dependent dose D(¢, p) over each point of time in which the activity
was performed (Equation 2). For instance, if participant 1 slept every night from 22:00
pm to 07:00 am, then their total dose while sleeping Dy,., would be determined as the
integral of their personal dose D(t) over all 7 nights between these hours (p = 1, act =
sleep, tacr = tseep = daily 22:00 pm - 07:00 am).

Daar(p) = ) D(t,p)dt (2)
D(t) was calculated as the product of pollutant concentration and inhalation rate
following Equation 1 (in this case using Method C). The total dose D(p) of each participant
was calculated as the sum of all activity doses D, (p) (Equation 3). Missing data were
corrected for by normalising each participation period to exactly 7 days.
The contributions of each activity to the total dose for each participant . (p) and averaged
over all participants ¥, were calculated using Equations 4 and 5 (used in Figure 4).

D(p) =Y Daut(p) 3)

act

Xact(P) = Dact () /D(p) 4)

Zact _ Xact(pl)—i-}(act(p;)+'--+Xact(pl) (5)

Figure 6 shows the mean pollutant dose per minute during different activities averaged
over all participants of the two cohorts D, (cohort). Firstly, the mean dose per activity
D was determined for each participant by dividing each activity dose Dy (p) by the total
time the participant spent on that activity 7., (Equation 6). For instance, if participant 1
spent 50 hours sleeping during his participation week and inhaled 75 mg CO over this
time, their mean CO dose while sleeping would be 75 mg / 3000 min = 25 yg per min.
The individual results of each participant were then averaged over both cohorts (Equation
7).

Dact (P) = Dact (p)/tact (P) (6)

Dact(pl ) +Dact(p2) +... +Dact(pi)
i

Dyt (cohort) = (7)

Figure 4 shows the mean dose per minute averaged over the two cohorts (urban and

peri-urban) calculated with different dose estimation approaches. The mean dose per
minute was determined by dividing the total dose of a participant D(p) (calculated with
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the three different dose estimation methods A, B and C) by the total participation time
t;or(p) (cf. Equation 6). The average contributions from different locations shown in the
bar of method C (colours) were determined as the average contributions to the total dose
as shown in Equation 5.

Note, that the results in Figure 4 are not equal to the average of the mean dose per
minute by activity of Figure 6 because the activities were performed over different time
periods (e.g. the contribution of the mean dose while sleeping contributes more to the
total dose than the mean dose while cycling as people spend much more time sleeping -
unless we are at the Tour de France).

S2. Correlation between personal and outdoor measurements
Epidemiological studies assume an association between outdoor and personal exposure?!,
and therefore that outdoor measurements can be used as a surrogate for personal exposure.
Graph S1 shows the correlation between measurements from portable monitors and the
nearest monitoring station during the winter (grey) and summer (green) campaign of
the AIRLESS project. The graphs show poor correlation (R> <0.2) between the two
exposure estimation approaches across all pollutants and seasons demonstrating that
outdoor concentrations are a poor predictor for personal exposures.
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Figure S1. Correlation between the concentration measurements of personal and
outdoor pollutants during the winter (grey) and summer (green) seasons. Personal and
outdoor measurements are collected at 1 min sampling interval.
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“ Py

oNOYTULT D WN =

gz B Home: 84%
35 Bl Transit: 5%
26 70 Other: 10%
7

38

3 Urban

40

41

2 (e) Participant time budget

o NA: 1% NA: 2%
27
28
29
30
31
32

CONFIDENTIAL MATERIAL

(b) spatio-temporal utilisation distributions
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(a) Weekly pollutant dose by partlapant (b) Density plots
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