22,721 research outputs found

    After the Fall: Legacy Effects of Biogenic Structure on Wind-Generated Ecosystem Processes Following Mussel Bed Collapse

    Get PDF
    Blue mussels (Mytilus edulis) are ecosystem engineers with strong effects on species diversity and abundances. Mussel beds appear to be declining in the Gulf of Maine, apparently due to climate change and predation by the invasive green crab, Carcinus maenas. As mussels die, they create a legacy of large expanses of shell biogenic structure. In Maine, USA, we used bottom traps to examine effects of four bottom cover types (i.e., live mussels, whole shells, fragmented shells, bare sediment) and wind condition (i.e., days with high, intermediate, and low values) on flow-related ecosystem processes. Significant differences in transport of sediment, meiofauna, and macrofauna were found among cover types and days, with no significant interaction between the two factors. Wind condition had positive effects on transport. Shell hash, especially fragmented shells, had negative effects, possibly because it acted as bed armor to reduce wind-generated erosion and resuspension. Copepods had the greatest mobility and shortest turnover times (0.15 d), followed by nematodes (1.96 d) and the macrofauna dominant, Tubificoides benedeni (2.35 d). Shell legacy effects may play an important role in soft-bottom system responses to wind-generated ecosystem processes, particularly in collapsed mussel beds, with implications for recolonization, connectivity, and the creation and maintenance of spatial pattern

    The Missouri Experience from 1992-93 through 1996-97 with a Guaranteed Tax Base Type of State Aid Formula

    Get PDF
    Missouri is already one of the lowest per capita taxing and spending states in the nation for public education

    Acoustic effects on profile drag of a laminar flow airfoil

    Get PDF
    A two-dimensional laminar flow airfoil (NLF-0414) was subjected to high-intensity sound (pure tones and white noise) over a frequency range of 2 to 5 kHz, while immersed in a flow of 240 ft/sec (Rn of 3 million) in a quiet flow facility. Using a wake-rake, wake dynamic pressures were determined and the deficit in momentum was used to calculate a two dimensional drag coefficient. Significant increases in drag were observed when the airfoil was subjected to the high intensity sound at critical sound frequencies. However, the increased drag was not accompanied by movement of the transition location

    Cell death and degeneration in the symbiotic dinoflagellates of the coral Stylophora pistillata during bleaching

    Get PDF
    Rising sea temperatures are increasing the incidences of mass coral bleaching (the dissociation of the coral–algal symbiosis) and coral mortality. In this study, the effects of bleaching (induced by elevated light and temperature) on the condition of symbiotic dinoflagellates (Symbiodinium sp.) within the tissue of the hard coral Stylophora pistillata (Esper) were assessed using a suite of techniques. Bleaching of S. pistillata was accompanied by declines in the maximum potential quantum yield of photosynthesis (Fv/Fm, measured using pulse amplitude modulated [PAM] fluorometry), an increase in the number of Sytox-green-stained algae (indicating compromised algal membrane integrity and cell death), an increase in 2’,7’-dichlorodihydrofluroscein diacetate (H2DCFDA)- stained algae (indicating increased oxidative stress), as well as ultrastructural changes (vacuolisation, losses of chlorophyll, and an increase in accumulation bodies). Algae expelled from S. pistillata exhibited a complete disorganisation of cellular contents; expelled cells contained only amorphous material. In situ samples taken during a natural mass coral bleaching event on the Great Barrier Reef in February 2002 also revealed a high number of Sytox-labelled algae cells in symbio. Dinoflagellate\ud degeneration during bleaching seems to be similar to the changes resulting from senescence-phase cell death in cultured algae. These data support a role for oxidative stress in the mechanism of coral bleaching and highlight the importance of algal degeneration during the bleaching of a reef coral

    Environments and Morphologies of Red Sequence Galaxies with Residual Star Formation in Massive Clusters

    Get PDF
    We present a photometric investigation into recent star formation in galaxy clusters at z ~ 0.1. We use spectral energy distribution templates to quantify recent star formation in large X-ray selected clusters from the LARCS survey using matched GALEX NUV photometry. These clusters all have signs of red sequence galaxy recent star formation (as indicated by blue NUV-R colour), regardless of cluster morphology and size. A trend in environment is found for these galaxies, such that they prefer to occupy low density, high cluster radius environments. The morphology of these UV bright galaxies suggests that they are in fact red spirals, which we confirm with light curves and Galaxy Zoo voting percentages as morphological proxies. These UV bright galaxies are therefore seen to be either truncated spiral galaxies, caught by ram pressure in falling into the cluster, or high mass spirals, with the photometry dominated by the older stellar population.Comment: Accepted for publication in MNRAS, 11 pages, 11 figure
    • …
    corecore